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Abstract Digital holographic particle holograms are recorded with an in-line setup and reconstructed by the con-
volution approach. From the reconstructed complex volume, the original particle positions are to be retrieved. A
detailed analysis - experimentally as well as numerically - shows a strong effect of the particle position within the
volume on the shape of the respective reconstructed particle image. In the experimental system applied here, mi-
croparticles of diameter below 9µm are used, which is smaller than the employed camera pixel pitch of 12µm. In
this case, not only the distance of the particle position to a sensor edge is important but also its relative position
to the camera pixel grid. It is demonstrated that a reconstructed intensity of a numerically simulated particle can
vary by more than 50% even when the simulated particle is moved by no more than a particle diameter. This is a
problem for particle detection algorithms relying only on an intensity threshold for particle detection. Furthermore,
the cut-off of particle holograms on the edges of the camera sensor affects the reconstructed images. Therefore, an
algorithm is introduced, which uses simulated particle images of the approximated transverse position which are
correlated with the reconstructed experimental data to retrieve three dimensional particle positions.
Keywords: Digital Holographic PIV, Holographic Particle Images, Water Flow Measurements

1 Introduction

In all fields of fluid dynamics complex flow situations require three dimensional high speed measurements. One
common technique is tomographic particle image velocimetry (PIV), employing usually at least four cameras
and pulsed laser light. The idea of in-line holographic PIV, using only a single camera and continuous wave
laser light of comparatively low intensity, is very appealing for several reasons. The light intensity is used very
efficiently due to the strong forward scattering. Thus, the temporal resolution is limited by the framerate of
the camera. The desired three dimensional information is directly recorded. The low light intensity and the
single camera in use make the system simple and cost-efficient. Furthermore, low light intensity is favourable
in some applications, e.g. with living organisms. In addition to the higher temporal resolution in comparison
to analogue holography, recording of digital holograms favours digital reconstruction, which does not only
provide information about the intensity but also about the phase of the object light field.

In spite of its advantages mentioned above, digital holographic particle image velocimetry has not yet be-
come a standard technique. As digital sensors yield a low numerical aperture of the recording system, a large
depth-of-focus can be observed in the intensity field surrounding each reconstructed particle position. Further-
more, random interference structures generate speckle in the intensity field [1], which can be misinterpreted
as particles resulting in ghost particles in the retrieved particle set. To overcome these drawbacks, the work
presented here does not only rely on the reconstructed intensity field for particle detection and validation but
also employs the phase information. So the complete information of the reconstructed complex field is used.
For this purpose, a study of the phase and the intensity field surrounding a reconstructed particle is presented.

The depth of focus problem has been addressed by many authors, e.g. by [2], [3] and [4], or, with a more
sophisticated setup using multiple cameras by [5]. Not so much attention has been paid to the effect of the
transverse particle location on the reconstructed particle image when the common convolution approach [6] for
particle image reconstruction from a hologram is used. A short illustration of the truncation on the sensor edges
affecting the reconstructed images can be found in [7]. In order to develop a particle detection algorithm which
is capable of measuring particles in all areas of the sensor, it has to be known, what kind of particle images
are to be expected from the system. In the course of this work, it becomes clear that the effect of the particle
position in the plane perpendicular to the optical axis is very prominent.

The analysis of particle images in sections 4, 5 and 6 is followed by first results of the developed particle
detection algorithm in section 7.
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2 The In-line Digital Holographic Particle Image Velocimetry Setup

The digital holographic PIV setup is shown in figure 2.1. The water flow under investigation is induced by a
rotating circular stirrer. The stirrer dips into the water filling a glass cuvette with a squared base of (50±0.5)mm
inner length. Polystyrene microparticles with an average diameter of (8.69±0.12)µm are added to the water.
These particles are illuminated by expanded and collimated laser light of a continuous wave Nd:YAG laser.
Part of the illuminating laser light is scattered by the particles generating the object wave. The remaining part
of the illumination beam acts as reference wave. Object and reference wave interfere on the sensor of a CMOS
highspeed camera, which records the holograms with a framerate of 620Hz.

Fig. 2.1 Digital holographic PIV setup for measurements of a water flow induced by a stirrer in a glass cuvette with
squared base of (5cm±0.5)cm inner length.

The extension of the camera sensor is used as optical low pass, as described in [8]. The Nyquist limit of the
camera sensor is defined by its pixel pitch. On the other hand, the spatial frequency of the diffraction structure
caused by a particle increases with increasing angle between the object and the reference wave. This can be
seen in figure 2.3, in which the circular interference patterns of particles are visible. With increasing distance
between scattering centre and recording plane, the total number of fringes reaching the sensor decreases. Hence,
the camera sensor is positioned sufficiently far from the scattering particles, that in the horizontal and vertical
extension of the region of interest of the hologram no spatial frequency is recorded which exceeds the Nyquist
limit. For the system parameters used here, the minimum distance between camera sensor and scattering
particles is therefore set to 27.7cm.

From this minimum distance and the extension of the sensor, the largest aperture half angle Ω is deduced
for this system. The depth of focus of a reconstructed particle can be estimated from this aperture half angle
by [9]

∆z =
λ

Ω2 . (1)

Hence, here the approximated depth of focus of a particle reconstructed in the distance of 27.7cm to the camera
sensor on the optical axis is more than 1mm, which is about 100 times the diameter of the employed particles.

A hologram recorded by this system can be seen in figure 2.2. Strong interference fringes are visible which
are not caused by the microparticles but which are due to unwanted reflections at temporally constant structures
in the setup, like the protective window of the camera sensor. In the measurements only the temporally moving
interference structures caused by the tracer particles are of interest. Therefore, the holograms are preprocessed
before they are reconstructed by subtracting a temporal mean of several holograms from each hologram with the
appropriate normalization. The result of a preprocessing routine can be seen in figure 2.3. Here, the temporal
mean of the previous and the following three holograms in the sequence was used for the preprocessing. The
circular interference fringes expected from microparticles become clearly enhanced by the preprocessing while
the central large circular pattern and the approximately vertical lines are hardly visible any more. Because
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Fig. 2.2 Raw hologram rescaled to maximum contrast in
256 grey levels.

Fig. 2.3 Preprocessed hologram rescaled to maximum
contrast in 256 grey levels.

structures moving in time remain in the filtered hologram, a great effort is made to keep the system as spatially
stable as possible. Still, fluctuations, for example due to the camera fan, cannot be completely avoided.

3 Hologram Reconstruction by the Convolution Approach

The complex light field is reconstructed from the filtered holograms by the well-known convolution approach
[6] with the Fresnel-Kirchhoff formula [10]. For simplicity, effects of changing refractive indices, as described
in [11] are not taken into account here. For the reconstruction distance z from the camera sensor, a constant
refractive index is used. Therefore, the reconstructed volume will be slightly compressed in the depth dimension
z. The complex field in distance z to the diffracting aperture, i.e. to the hologram, is thus approximated by

C(x,y,z) =
z

iλ

∫
∞

−∞

∫
∞

−∞

U(ψ,η)
ei2πr/λ

r2 dψdη (2)

where r is defined by r =
√
(x−ψ)2 +(y−η)2 + z2, (x,y,z) describe the coordinates in the reconstructed plane

in distance z to the diffracting hologram H, and U denotes the field amplitude in the diffracting plane [6]. λ is
the wavelength of the employed laser light.

For hologram reconstruction U(ψ,η) is replaced by the hologram intensity distribution superposed with
a plane wave of normalized intensity 1. In favour of computational efficiency, the calculation is executed by
three Fourier transformations. This yields, for each reconstructed distance z to the hologram plane, a slice of
the complex object field

C(x,y,z) = F−1
{

F
[
H(x,y) · e−i2πz/λ

]
×F [k(x,y,z)]

}
with k(z) =

z
iλ
· e

i2π

√
x2+y2+z2/λ

(x2 + y2 + z2)
, (3)

while F refers to a two dimensional Fourier transformation and × to a pointwise product. The reconstruction
step is computationally expensive but also highly amenable to parallelisation. Hence, the calculation is executed
by the graphics processing unit. Additionally, the region of interest in the holograms is set to the size of
1024px×1024px. Hence, the number of pixels in each dimension is a power of 2, which facilitates the speed
of the fast Fourier transform algorithm.

4 Particle Image Simulation

Undoubtedly, it is not possible to calculate the true original object wave by executing equation 3 on a hologram
which is roughly sampled by a digital sensor and has a comparatively limited extension due to the limited sensor
size. In order to write a particle detection algorithm, one has to understand what a reconstructed particle image
will look like.

As a first step, it is of particular interest, what the effect of a small transverse particle movement will be.
In 2009, “most of the development of algorithms to reconstruct digital holograms is targeted to finding small
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particles (typically 2 pixels widths[...] in extent)” [12]. The system used here deals with even smaller particles
of less than a single pixel in extend. To the authors’ knowledge, up to today, the algorithm development
concentrates on particle diameters exceeding the pixel pitch of the recording sensors. It can be expected that
for the small particles used in this investigation, already a small movement in the plane parallel to the camera
sensor will affect the reconstructed particle image. To analyse this effect, the diffraction pattern generated by
a circular disc of the diameter corresponding to the average particle diameter in the experimental system of
8.69µm is simulated. By using Babinet’s principle and Fresnel-Kirchhoff diffraction theory, the complex wave
in the distance of 30cm is calculated. This means that the simulated particle distance corresponds to a particle
which is approximately in the lateral centre of the cuvette in the experimental system shown in figure 2.1. The
resulting complex object wave is superimposed with a plane reference wave. The retrieved intensity distribution
is the simulated hologram of a particle on the optical axis and in distance of 30cm to the sensor.

As visualized in figure 4.1, the diffraction field in the size of the camera sensor of (1.228cm)2 is simulated.
The central circle with the diameter of the camera sensor of this simulated particle hologram is used to simulate
particles in different locations in a constant distance of 30cm to the sensor. This is done by moving the centre of
the particle hologram to different locations on the simulated camera sensor. In the following, the coordinates in
the plane perpendicular to the optical axis will be referred to by Euclidean coordinates (x,y) with x describing
the horizontal coordinate. Hence, the (x,y) position of the simulated particle is moved from the optical axis
in the centre of the simulated hologram to the desired transverse position. The spatial extension of the pixel
matrix corresponding to the camera sensor area remains constant. Therefore, like in the optical experiment, a
part of the diffraction pattern is deleted as it is cut off at the edges of the camera sensor.

Fig. 4.1 Particle hologram simulation from a diffracting circular aperture.

Fig. 4.2 Reconstruction of a particle image from a simulated particle hologram.

In order to tailor the hologram to the experimental conditions, the intensity is quantised to the bit depth of
the recording camera. Additionally, the transverse resolution of the matrix is reduced to 1024×1024px2. This
means that each pixel corresponds to (12µm)2, which is the pixel size of the camera used in the experiment.

Finally, similar to the reconstruction of the optically recorded holograms, the complex object wave is re-
constructed by simulating the diffraction of a plane wave by the simulated hologram (see section 3). This is
sketched in figure 4.2, where a plane wave illuminating the simulated hologram from the left yields five recon-
structed intensity planes with the intensity maximum in the distance of 30cm to the hologram. In the same way,
also the phase values are retrieved. Therefore, the reconstructed particle images are comprised of several slices
parallel to the hologram plane, reconstructed in predefined distances to the hologram. The distance of the slices
is set to 50µm.
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5 Particle Images Depending on the Subpixel Location

Particle images are simulated on a grid distributed over the whole camera sensor. As an example, four positions
will be discussed here in more detail. These positions are marked by blue circles in figure 5.1 and are defined
in pixel coordinates by (x,y) ∈ {(519.5,519.5),(519.5,526),(526,519.5),(526,526)}. Hence, one particle is
simulated in the centre of four pixels, two particles are located in the centre between two pixels and one is
simulated in the centre of a single pixel. The origin of the pixel coordinates is defined in the upper left corner
of the (x,y)-plane. Therefore, the centre of the pixel grid is located at (x,y) = (512.5,512.5)px.

Fig. 5.1 Transverse positions of particles simulated in a distance of 30cm to the camera sensor on a pixel grid with origin
in the upper left corner of the 1024×1024 pixel matrix.

The intensity distributions in the focal plane of the simulated particle images are shown in figure 5.2. All
intensity values are normalized to the reconstructed global maximum intensity of all four particle images. The
intensity of the reconstructed particle image with x and y position in the centre of pixel (526,526) is more than
twice as large as the intensity reconstructed in each of the pixels surrounding (x,y) = (519.5,519.5)px in the
corresponding image shown in the upper left of figure 5.2. As the diffraction efficiency can be expected to be
lower for particle holograms further away from the centre of the camera sensor at (x,y) = (512.5,512.5)px,
this huge difference can be attributed to the location of the particle in relation to the pixel grid.

Figure 5.3 shows the gradation of the intensity parallel to the optical axis for a constant (x,y)-position for
each of the four simulated particles. Characteristics of the intensity fields of reconstructed particle images can
be seen. In the ideal simulated case in the centre of a pixel position, the intensity in the focal plane reaches a
distinct maximum while its value can clearly break down, if the location of a pixel edge is in the centre of the
(x,y)-position of the scattering particle. This is one reason, why the algorithm developed in the course of this
work does not rely on intensity thresholds only for particle detection and deletion of ghost particles.

Figures 5.4 and 5.5 show intensity as well as phase planes through the same simulated particle images as in
the previous two figures 5.2 and 5.3. This time, vertical planes parallel to the optical z-axis are shown. The in-
tensity distributions show the expected behaviour of a comparatively well-defined transverse localisation of the
intensity maximum, spreading over 2 pixel at maximum while the depth of focus is in the order of magnitude

Fig. 5.2 Normalized intensity values in the xy-plane in the
focal plane for four individually simulated parti-
cles in the (x,y)-positions marked in figure 5.1.

Fig. 5.3 Normalized intensity values parallel to the
optical axis of the particle images in fig-
ure 5.2 through the (x,y)-positions (519,519),
(526,519), (519,526) and (526,526)px.
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Fig. 5.4 Normalized intensity values in the yz-planes of
four individually simulated particles in the (x,y)-
positions marked in figure 5.1.

Fig. 5.5 Wrapped phase values in the yz-planes of four
individually simulated particles in the (x,y)-
positions marked in figure 5.1.

of mm. In figure 5.5, the wrapped phase values are shown. These are the coloured representations of the phase
values modulo 2π . These values, on the other hand, show a very similar behaviour of contracting cones which
expand again with opposite sign after having passed the focal plane. For a particle on the optical axis, this was
simulated and measured for particles on a glass plate in [3]. This noticeable behaviour of the reconstructed
phase values justifies the approach that the phase information should be employed for particle position detec-
tion as well as for the distinction between ghost particles and true particle images. Unfortunately, searching
for highly symmetric phase cones and intensity maxima is not sufficient for a particle position detection and
validation routine, as will become clear in the next section.

6 Particle Images Depending on Their Distance to the Borders of the Camera Chip

In a first step, the quality of the simulation is compared with results from the optical experiments. In an
optical experiment, a particle was detected in position (x,y) = (511,519)px. The resulting wrapped phase and
normalized intensity values can be seen in figures 6.1 and 6.2 while the respective simulation results are shown
in figures 6.3 and 6.4. The very good agreement between experiment and simulation can be seen at once.
Hence, the particle simulation algorithm is sufficient to generate particle images which can be expected from
the experimental system.

A slight fluctuation of the phase values close to the axis through the investigated (x,y)-position of the
particle in the numerical simulation, which is not detectable in the experimental measurement, is attributed to
the numerical truncation error. The second difference between experiment and simulation is that the intensity in
the experiment seems to be more elongated in the depth direction, which means that the depth of focus is larger.
This is explained by three effects. At first, the resolved number of interference fringes is probably more limited
in the optical experiment, as many particles are present and the background shown in figure 2.2 additionally
covers the interference fringes of particles. Therefore, the numerical aperture, which is directly related to the
number of interference fringes recorded from the particle, is reduced. This directly results in an increased depth
of focus, as can be seen in equation 1. Secondly, the experimental conditions are always accompanied by noise,
for example due the the layers with different refractive indices in the beam path. Finally, which is probably the
most important reason, the normalization is different. The reconstructed intensity spreads slightly more in the
(x,y)-plane and in z in the optical experiment than in the simulation, as expected from the reduced numerical
aperture and the noise. Additionally, the (x,y)-position of the particle generating the recorded interference
pattern is probably not precisely located in the centre of a pixel on the camera pixel grid. Therefore, the
reconstructed intensity maximum is spread over more pixels than in the simulation. So the global maximum of
the intensity values reconstructed in the particle image decreases. The intensity values displayed in figures 6.1
and the following are normalized to the global intensity maximum of the respective reconstructed particle
image. When this maximum is decreased, smaller intensity values are enhanced in the respective image.
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Fig. 6.1 xz-planes of experimentally reconstructed
wrapped phase values and normalized intensity
values of a particle close to the centre of the
sensor [13].

Fig. 6.2 yz-planes of experimentally reconstructed
wrapped phase values and normalized intensity
values of a particle close to the centre of the
sensor [13].

Apart from the described minor deviations between the experimental and the numerical data, a good agree-
ment between the images is clearly visible. Symmetric contracting phase cones with changing sign in the focal
plane of the particle and subsequent expansion can be measured as well as simulated. The intensity is elongated
in the z-direction and comparatively concentrated in the (x,y)-position. Simply searching for a phase jump for
particle localisation will not work. The reason is that, due to the phase wrapping, phase discontinuities can be
found in the whole reconstructed image volume. Therefore, from these images, a rough estimation of the parti-
cle location by searching for intensity maxima and a consecutive comparison with expected particle images is
promising.

Closer to the edges of the camera sensor, e.g. surrounding position (x,y) = (427,86)px, images are re-
constructed as shown in the figures 6.5 and 6.6. The phase cone and the intensity distribution in the yz-plane
at x = 427px appear distorted while the xz-plane at y = 86px is remaining comparatively symmetric apart
from the experimental background noise. In order to answer the question whether such a structure can be
attributed to a real particle in the measurement volume, the particle image expected from the same position
(x,y) = (427,86)px was simulated with the algorithm paraphrased in section 4. The resulting images are
shown in figures 6.7 and 6.8. Again, a good agreement between simulation and experimental results can be
seen and confirms that the reconstructed image was caused by a scattering particle closer to the upper edge of
the hologram. Therefore, a particle search algorithm also has to be able to detect particle images being distorted
in such a way.

The reason for the particle image distortion in the yz-plane can be found in the shorter distance of the
particle to the sensor edge. Therefore, more diffraction fringes of the particle are cut off by the sensor edge and
cannot contribute to the formation of the reconstructed particle image. Hence, in the dimension in which many
fringes are lost, the particle image is reconstructed in a distorted way. In summary, the decisive factor for the
shape of a particle image is the location of the respective particle in the plane parallel to the recording camera
sensor, perpendicular to the optical axis.

7 An Adapted Particle Search Algorithm

The previous sections show that the shapes of particle images vary distinctly depending on their location in the
plane parallel to the sensor plane of the recording camera. The objective of a particle detection algorithm is the
detection of particle positions from the reconstructed object field in the measurement volume. For this purpose,
an algorithm is developed which correlates the intensity as well as the phase values expected from a particle
image in a specific location in the plane perpendicular to the optical axis, i.e. in a defined (x,y)-location.

A rough estimation of the particle location from local intensity maxima yields a set of suspected particle
positions with (x,y,z) coordinates. For each of these maxima, four reference patterns in phase and intensity are
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Fig. 6.3 xz-planes of simulated wrapped phase values and
normalized intensity values of a particle close to
the centre of the sensor [13].

Fig. 6.4 yz-planes of simulated wrapped phase values and
normalized intensity values of a particle close to
the centre of the sensor [13].

Fig. 6.5 xz-planes of experimentally reconstructed
wrapped phase values and normalized intensity
values of a particle close to the upper sensor
edge [13].

Fig. 6.6 yz-planes of experimentally reconstructed
wrapped phase values and normalized intensity
values of a particle close to the upper sensor
edge [13].

Fig. 6.7 xz-planes of simulated wrapped phase values and
normalized intensity values of a particle close to
the upper sensor edge [13].

Fig. 6.8 yz-planes of simulated wrapped phase values and
normalized intensity values of a particle close to
the upper sensor edge [13].
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generated for the respective estimated (x,y) location. Four patterns are generated due to the clearly differing
particle images depending on the subpixel location (see section 5). So, the reference particle image with the
maximum correlation value within a predefined surrounding area of the estimated particle position is selected.
A particle position is finally retrieved as the position of this global correlation maximum which additionally
exceeds a predefined correlation threshold.

As the particle simulation algorithm is computationally expensive, about 26000 reference images are calcu-
lated and stored as a look-up table before the particle detection algorithm is executed. Based on these reference
patterns, for each estimated particle position, four reference patterns are generated by superposition. These
four reference patterns, one for each subpixel location, are used for the particle detection around each estimated
position.

The holograms of 92 time steps resolved with 620Hz are treated by the algorithm. The experimental setup
is shown in figure 2.1. The stirrer is located approximately in the centre of the cuvette. The cuvette is located
with an offset of about 1.4cm to the optical axis of the system such that lower x values in the reconstruction
correspond to the area closer to the cuvette wall. The upper border of the recording volume is located below
the stirrer. An approximately circular flow is expected with a higher velocity at higher x-values.

The retrieved particle positions are tracked with the tracking code published by [14] based on the algorithm
decribed in [15]. For particles being attributed to a single trajectory the maximum movement of a particle
between two images is set to 800µm while the xy-positions are rescaled before the tracking in order to account
for the expected higher flow velocity in the z direction. After the tracking, the rescaling is undone. The
minimum trace length of 10 timesteps and a maximum number of lost timesteps in a single trajectory is set to
4. Finally, all detected particle positions attributed to a single trace are fitted by a polynomial and the root mean
square error between these particle positions and their respective traces are calculated. For a total of 114 traces
resulting from 1668 tracked particle positions the maximum deviations and average root mean square error of
all positions are listed in table 7.1.

In table 7.1 the expected smaller deviation between the particle positions and the polynomial fits in the x and
y coordinates perpendicular to the optical axis can be seen. Still, the deviation of the longitudinal position z is
smaller than the approximated depth of focus in the optical system of more than 1mm. Additionally, figure 7.1
shows the projection of the particle traces to the xz-plane. The reconstructed volume within the cuvette is seen
from below. Already after the recorded time of 0.15s, the expected circular flow behaviour becomes apparent.
Figure 7.2 shows the reconstructed three dimensional volume.

dimension maximum deviation between a root mean square
particle position and its error of the detrended data
respective trace / µm of all reconstructed traces / µm

x 106 17
y 74 12
z 1059 260

Table 7.1 Maximum deviation and root mean square error calculated from all 1668 tracked particle positions to their
respective 114 traces retrieved by fitting the traces with polynomials.

8 Summary and Outlook

It is demonstrated in numerical simulations and in experiments that particle images reconstructed from digital
holograms can vary distinctly for the same particle. Changes of the image appearance can be attributed to
the location of the particle during the recording process. Therefore, a different reconstructed particle image
will be retrieved from a holographic recording of a particle if its position changes in the plane perpendicular
to the optical axis. If this position corresponds to a pixel edge on the camera chip or a pixel centre, the
reconstructed image will differ in its global intensity maximum and the shape of the reconstructed phase and
intensity images. Therefore, a subpixel resolution can only be achieved, if this is taken into account in the
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Fig. 7.1 Reconstructed particle trajectories from 92 time steps with
620Hz projected to the horizontal plane.

Fig. 7.2 Three dimensional traces in the recon-
structed volume.

particle position detection algorithm. Particles of the same size are not reconstructed with the same intensity
maximum. Algorithms using intensity thresholds for particle detection should take this effect into account.
Furthermore, the truncation error due to the loss of diffraction fringes on the sides of a camera sensor is very
prominent and hence distorts the reconstructed particle images.

Based on this experience, an algorithm is developed, which also detects particles close to the sensor edges.
The main idea of the algorithm is that a different reconstructed particle image is to be expected when the
measured particle moves perpendicularly to the optical axis. Therefore, in the correlation analysis executed in
the algorithm, different reference images are used for each estimated particle location for the fine resolution.
The expected particle images are simulated and used as reference patterns in a particle detection algorithm. This
algorithm relies on the phase and the intensity values of the reconstructed sample volume and the simulated
particle images. Correlation values between these patterns are used for particle position detection and validation
in an optical experiment. Finally, particle traces are retrieved from the reconstructed particle positions. In a first
application of the algorithm, the average root mean square error of these traces is clearly below the previously
estimated depth of focus for the imaging system. Future research will deal with the appropriate threshold of
the correlation values to distinguish ghost from real particles and the application of the developed algorithm to
longer time series.
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