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Abstract The aim of this experimental study was to use classical 2D PTV (Particle Tracking Velocimetry), and to 

extend it to develop a 3D method. One of PTV method advantages is the study of a situated phenomenon thanks 

to its Lagrangian specification. Thus, those 2D and 3D methods can be used to investigate simple, as well as more 

complex flows. For the 2D method, a plan of the seeded flow was illuminated by a monochromatic source (Nd-

YAG laser) which reflects on tracer particles, and a camera recorded images of the flow. Nevertheless, most of 

flows correspond to 3D non-stationary phenomena. Thus the objective was to develop an optical method, with its 

image processing software, to be able to obtain a 3 dimensions and 3 velocity components description of the 

phenomena. The optical method we developed is based on both PTV and Rainbow Volumic Velocimetry (RVV) 

principles. It consisted in illuminating a volume of seeded flow with a continuous polychromatic spectrum, 

obtained from a white light beam dispersion using a blazed reflecting grating. The color enabled us to determine 

the third spatial component, i.e. the displacement in the depth direction (perpendicular to the observation window). 

Color images were captured with a 3CCD camera. To process these images and analyze the flow (analysis of 

tracer’s colors in the polychromatic volume), we developed a computer program using Python™ that we called 

“PyTV”. This software enables us to process images from classical 2D PTV method, as well as from the 3D 

method. 2D or 3D velocity vector fields were obtained. The image processing code was validated using synthetic 

images we generated with a well-known 2D or 3D displacement. The software processing was found to have a 

good accuracy (error under 5%). 
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1 Introduction 

Some optical methods enable to study space and temporal displacement of each element of fluid flow in a 

(quasi) non-invasive way. In literature, two types of optical method [1] can be found: the first one is based on 

fluid properties variation like, for instance, shadowgraphs [2] whose principle is based on the refractive index 

variation according to the fluid temperature variation. The second type of method is based on light diffusion 

on markers like, for instance, PIV (Particle Image Velocimetry) which is an accurate and quantitative method 

used for measuring large instantaneous fluid velocity fields with high spatial resolution. Standard PIV (two 

dimensions 2D, two velocity vectors 2C) extracts the displacements as functions of the in-plane directions [3]. 

All the optical methods have advantages and drawbacks, an overview of some of them, with the space and 

temporal information that can be obtained, is given on Fig. 1. Nowadays, most of “classical” optical methods, 

such as interferometry, Schlieren, shadowgraph, PIV, LIF (Laser Induced Fluorescence), PTV (Particle 

Tracking Velocimetry), tomography etc. delivered only a 2D information. Thus, 3D information is usually 

reconstructed by assembling “plane by plane” 2D results [4]. Even dual Plane Stereoscopic PIV (2D-3C) only 

allows the determination of the whole fluid velocity gradient tensor in the investigated plane (2D). Non-

intrusive 3D measurement, like holography [5], are still hard to set up (and sometimes do not enable the study 

of non-stationary phenomenon). 

Another method, which is 3D-3C and was developed in our institute, is the RVV (Rainbow Volumic 

Velocimetry) one [6][7]. Instead of illuminate a plane of the flow with a monochromatic light (laser) sheet, 

this method is based on the illumination of a volume of the seeded flow with a continuous polychromatic 

spectrum. The color is used to determine the third component. The polychromatic spectrum is obtained from 

a white light beam dispersion using a blazed reflecting grating and a polychromatic volume of light is obtained 

thanks to optical components. Each particle can reflect a color, recorded with a high exposition time by a 

3CCD camera. Thus, for each particle, a streak corresponding to the displacement of the particle is obtained. 

From position and color of both ends of each mark, and knowing the exposition time, particle displacements 

and velocities can be determined. This method have already been checked [8] and used, for instance, on flows 

downstream an obstacle [9]. This method requires a low seeding density. To improve the 3D velocity 
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determination (for instance with rotational flows), our objective was to combine PTV and RVV methods. 

Classical PTV method [10] enables to determine velocity by following the particle displacement between 

consecutive images. Since each particle is individually tracked, like Lagrangian method, contrary to the PIV 

method, based on correlation calculation between two areas of images which contain groups of particles [11]. 

Classical PTV is based on (as for PIV) a seeded flow (lower seeding density than in PIV) illuminated with a 

laser sheet (monochromatic). The advantage of PTV is then to locally describe phenomena in flow, but this 

method remains a 2D one. 

 

Fig. 1 An overview of the existing optical velocimetry method [12] 

2 Experimental setup: 2D and 3D PTV 

As previously mentioned, our objective was to develop a 3D-3C PTV method based on “classical” PTV and 

RVV principles.  

The 2D classical method requires a seeded flow which is illuminated with a laser sheet. This last one is created 

from a laser beam which is split into a sheet thanks to optical components (lenses).  

Concerning the 3D method, the experimental setup is given on the Fig. 2a. The light source we used is a white 

laser (Koheras SuperK Versa). At the maximum of its power, only approximatively 9.3% of the spectrum is in 

visible wavelength: the major part of the white laser wavelengths correspond to infrared ones. Yet, those 

infrared induced high energy input in the system, and can induced thermal effect which could be responsible 

of flow structure modification. Thus, to avoid the influence of energy related to infrared, two dielectric mirror 

(M1 and M2 on Fig. 2a) were used: 99.5% of the light reflected by the mirror are in visible spectrum. Then, 

the laser beam was diffracted into a rainbow thanks to a blazed grating (Fig. 2b). The only diffraction order 

we used was the first one: the 0-order had the highest energy but was not diffracted enough (it was just the 

image of the laser source), and the other orders had too low energy levels. Thus, only the first order was then 

split into a volume of light thanks to a plano-convex lens. 

 

 

  

Fig. 2 (a) Optic device; (b) Blazed grating principle [13] 

 

The volume of rainbow lights (continuum spectrum) illuminates a seeded flow, and a 3CCD camera must be 

used to record images of the particles. On the 2D images, each particle has a spatial position (x, y). Then, the 

color of each particle corresponds to the position of the particle in the last spatial component: the depth, z. In 

addition to the classical spatial calibration in (x, y) direction, a color calibration is necessary to obtain the 



10th Pacific Symposium on Flow Visualization and Image Processing 

Naples, Italy, 15-18 June, 2015 

 

Paper ID: 180  3 

position of the particle in depth. On the image, the color of each particle corresponds to values on each three 

color channels of the camera (Red, Green and Blue). The color calibration must link the particle color (image 

information) to the spatial position along the z axis (Fig. 3). 

 

 

Fig. 3 Color using in PTV 

3 Image processing software 

To obtain 2D or 3D velocity vector fields, the images acquired with the camera need to be processed. We 

developed a Python-coded program which is able to identify and track particles in a succession of consecutive 

images. Python™ is a programming language, object-oriented, open-source and cross-platform. The used 

scientific libraries for our process were: PIL (Python Imaging Library), SciPy (Scientist Python) and NumPy 

(Numerical Python). The developed software, called “PyTV”, is able to process classical 2D PTV as well as 

3D one. The program structure is composed of three types of module: main (bold boxes on the Fig. 4a), process 

(italic text on the Fig. 4a) and minor (dotted line on Fig. 4a). All setting for the image processing are inputted 

via the graphic user interface corresponding to the “PyTV” module. This last one sets off the “mainprocess” 

module which is the only one being linked to all modules: so, it handles both execution order and 

communication between each process module. The “mainprocess” algorithm is given on Fig. 4b. 

 

 

 

Fig. 4 Diagram of (a) the software modules and of (b) the main algorithm 

 

This “mainprocess” algorithm is divided into four steps, each one corresponding to a specific process module. 

The first step corresponds to the “Preprocessing” one: raw images quality is improved to enable a better 

identification of particles. To do so, numerous images are recorded before running the experiment. From those 

images, a mean image is computed. To remove the fixed element (dead pixel or steady reflection) from images, 

and also to reduce images noise (due to the camera), this mean image is subtracted to each image acquired 

during the experiment. Lastly, a Gaussian filter and a thresholding are applied to the recorded images. 

 

After the “preprocessing” module, the “identification” enables to index each particle in each image. To identify 

particles, we first convert the previous preprocessed images into binary ones. Each detected object is identified 

and labelled in the image. Then, to remove objects that are not a particle, we developed a Gaussian fitting. 

Thanks to this fitting, six parameters (𝑥0, 𝑦0, 𝜎𝑥, 𝜎𝑦, 𝜃,𝑀) are extracted from the 2D Gaussian function (1)[14]: 

 

 𝑔(𝑥, 𝑦, 𝑥0, 𝑦0, 𝜎𝑥, 𝜎𝑦, 𝜃,𝑀) = 𝑀𝑒
−8[𝐴(𝑥−𝑥0)

2+2𝐵(𝑥−𝑥0)(𝑦−𝑦0)+𝐶(𝑦−𝑦0)
2] (1) 
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With 𝐴, 𝐵 and 𝐶 coefficients defined in equation (2): 

  

{
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An example of a required criterion for an object to be a particle is that the 𝜎 ratio, given on equation (3), must 

be between LGRP (Low Gaussian Ratio Parameter) and HGRP (High Gaussian Ratio Parameter) values: 

  

𝐿𝐺𝑅𝑃 ≥
𝜎𝑥

𝜎𝑦
≥ 𝐻𝐺𝑅𝑃 (3) 

 

With 𝐿𝐺𝐹𝑃 ∈ ]0, 1] and 𝐻𝐺𝐹𝑃 ∈ [1,∞[, both values are given as input in the program by the user. Another 

example of filtering criterion is the value of the Gaussian amplitude "𝑀" (1) which mustn’t be too high with 

regard to the image color depth. The Gaussian fitting also enables a better localization of the particle in the 

image, since it allows to obtain subpixel coordinates (x0 and y0): displacements determination (and so 

velocities) will be more accurate. The next step after this “identification” module is the tracking of all particles. 

In the “tracking” module (Fig. 5), we developed a sequential tracking, i.e. each particle will be followed during 

the whole images series (as long as the particle is still in the image).  

 

  

Fig. 5 Tracking algorithm 

 

All the tracking data are gathered together in a matrix: its rows correspond to the particle track, and its columns 

to the image number. It is thus possible to follow only one particle during the whole process (trajectory of one 

particle along image series).  

Lastly, after the “tracking” process, the last step corresponds to the post-processing one. Thanks to 

identification (subpixel position of each labelled particle) and tracking data (tracking matrix), we can compute 

the particle displacement (in pixels). Apart from the tracking which becomes 3D for the 3D PTV, the main 

difference between the 2D and 3D PTV is the calibration to convert pixels into length. Whereas for the 2D 

PTV, only a spatial calibration is required (in the x, y plan), for the 3D one, a colorimetric calibration must be 

done. Indeed, information obtained from the 3CCD camera, i.e. RGB channels, must be converted into spatial 

position. We need to obtain the camera description (Red, Green, Blue) of the white source spectrum along the 

z axis (depth, Fig. 3). The spectrum of the white laser (Koheras SuperK Versa) obtained on the 3-CCD color 
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camera (Sony DXC-990P) is given on Fig. 6a. To obtain a correct RGB signal, with a reduced noise (camera) 

the image of the spectrum on Fig. 6a was pre-processed. To do so, a mean images of hundreds of snapshots 

with the lens cover on was removed from the raw image of the spectrum. The snapshots with the lens cap on 

were taken before and after the experiment, to take into account the effect of thermal noise. The corresponding 

RGB level (determined along the horizontal axis of the spectrum) is showed on Fig. 6b and still exhibits some 

noise. The signal was thus processed with a Fast Fourier Transform (FFT) algorithm to extract frequencies of 

our spectrum. Then we applied a low-pass filter to remove all high frequencies (which corresponded to the 

noise). Then we got back to our signal thanks to an Inverse Fast Fourier Transform (IFFT) algorithm. The 

smoothed signal can be seen on the Fig. 6c. 

 

 

 

 

 

Fig. 6 (a) White laser diffracted spectrum (laser power: 95%);  

(b) Corresponding color channels along horizontal level; (c) FFT process result on Fig. 6b 

 
On the Fig. 6, it is obvious that the blue represents only a little part of the spectrum: indeed, blue spatially 

depict only 16% of our spectrum. Once the spatial and colorimetric calibration done, the displacement vector 

fields can be obtained. Knowing the time between images, velocity vector field can be computed. The last 

steps of the post-processing module correspond to the filtering of false vectors, and to the possibility to 

interpolate (or not) the vector field. 

4 Validation 

To validate our software, we generated synthetic images allowing us to configure many parameters on image 

like its format, its color depth, its size or its signal noise ratio (SNR), and on particles like their sizes, their 

color limits, their behaviors (translation, rotation). 

Figure 7 represents the generation of two synthetic images whose particles have a displacement only along z 

axis (Fig. 7). The images have 512 by 512 pixel size, and contain one hundred particles whose diameters vary 

between seven and eight pixel. 

 

  

Fig. 7 Two synthetic images with displacement along z axis 

 

These synthetic images (Fig. 8) have been processed by our software “PyTV”. 94% of particles have been 

identified (Fig. 8a). Without optimized parameters, the mean error is 5.3%. It depends on the understanding of 
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our flow because with adapted filter parameters, this error can be reduced and reached values below 2%. 

 

 

Fig. 8 (a) Identification result; (b) 3D vector field (True norm: 40) 

 

We also used our program to estimate the global error on 3D particles’ displacement by generating synthetic 

images whose particles move in each direction (x, y, z). 

 

  

Fig. 9 Two synthetic images with displacement along x, y and z axis 

 

The mean error is below 4% and vectors have a same direction (Fig. 10). 

 

 

Fig. 10 3D vector field (True norm: 22.36) 
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Figure 11 gathers the displacement error along each axis. 

 
Axis True displacement “PyTV” mean displacement Error (%) 

x 6 5.97 0.40 

y 8 7.91 1.05 

z 20 18.95 5.20 

Fig.11 Error table 

 

The most important error concerns the displacement along the z-axis. Our program is validated, but we can 

improve the color identification. 

5 Conclusion 

This experimental study concerns the development of a 3D particle tracking velocimetry method. We have 

adapted an experimental setup to work with 2D and 3D PTV. To process these images, we created a computer 

program using Python. We developed all the steps leading us to the determination of 2D and 3D velocity vector 

fields: pre-processing, identification of the particles, tracking and post-processing. For 3D program, we have 

implemented a calibration method to obtain a function giving us a position according to the color values of a 

particle. The colorimetric calibration will be improved and the 3D PTV method will be implemented on real 

experimental flows. 

Thanks to this 3D particle tracking velocimetry method, our objectives are to characterize two-phase flows in 

the presence of one or more bubbles. One aspect of the study is fundamental and deals with the characterization 

of hydrodynamic instabilities (thermocapillary) growing at an interface (air / liquid or vapor / liquid). 
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