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Abstract A novel technique for the validation of velocity fields is proposed in this paper. Existing methodologies 

for vector validation compare each vector of the field with a constant number of neighbours and are as such, unable 

to detect false vectors in the vicinity of outlier clusters. Moreover, they are apt to over-detect correct vectors as 

outliers in case of ambiguity due to strong gradients in the velocity field. For this reason, a new validation algorithm 

has been proposed to enhance robustness in case of outlier clusters and reduce over-detection. This goal is pursued 

through a coherence-adaptive variable neighbourhood: in contrast with existing methodologies, the novel 

algorithm automatically enlarges the number of neighbours for a scrutinized vector in order to always ensure a 

reliable comparison. Coherence is defined as the residual of a vector with a parabolic regression of its closest 

neighbours and allows a strong enhancement in robustness against outlier clusters also when applied to existing 

methodologies. In addition to this, the proposed algorithm is provided with a distance-based Gaussian weighting 

system and the comparison of vectors is performed by means of magnitude and direction instead of vector 

components. To further improve detection, a new operator to evaluate the median of a sample of data is also 

suggested and an automatic evaluation of the background error contributes to the adaptivity. Assessment of this 

novel technique is performed with several Monte Carlo simulations: legitimate velocity fields are contaminated 

with false vectors collected in groups of different sizes and magnitudes. In order to stress the importance of the 

numerous innovations introduced in this novel technique, a modified version of previous validation techniques 

with the coherence-adaptive variable neighbourhood is also proposed as a comparison. An application to a PIV 

experiment also shows the influence of the validation algorithm in a real image analysis. 
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1 Introduction 

Particle Image Velocimetry (PIV) is a measurement technique that allows the evaluation of flow displacements 

between sequential images by means of statistical operators. The most common operator in PIV is the cross-

correlation, although very versatile, its accuracy and robustness are strongly influenced by the image quality, 

underlying flow features, particle image density and velocity gradients. An insufficient number of particles or 

a strong distortion of the particle patterns between two snapshots may lead to erroneous velocity estimates. As 

Westerweel stated [1], although velocity outliers can be reduced up to less than 5% through carefully designed 

experiments [2], their occurrence in the results is almost inevitable and when they are absent, it usually means 

that a higher spatial accuracy could have been reached. 

The presence of outliers in the velocity field strongly precludes the possibility to evaluate derived quantities, 

especially when first or second order derivatives are required, and for this reason vector outlier detection has 

received considerable attention within the PIV community. 

Keane and Adrian [2] define the detectability of the measurement within a correlation window as the ratio of 

the first tallest peak to the second tallest peak of the correlation map. Though this can be useful to identify 

potential outliers it is insufficient to detect spurious vectors in the final velocity field. Instead, obtained velocity 

fields must undergo a secondary validation process.Many are the post-interrogation algorithms that have been 

implemented in the last two decades. Due to the instantaneous nature of the flow measurements typically 

analysed with PIV, most of these techniques rely on a spatial comparison of each vector with its neighbours at 

the same time step. One of the simplest algorithm is the “manual” method [3], where a vector is considered to 

be wrong where its magnitude and direction are different from their closest neighbours according to a tolerance 

that is “manually” set. Westerweel [1] also studied the potential of a statistical approach to detect spurious 

vectors, investigating and comparing three different methods: the global-mean, the local-mean and the local-

median, showing the latter having the highest efficiency. Song et al. [4] realised that although the median filter 

proposed by Westerweel is able to remove most of the outliers, correct vectors are affected by a smoothing 

effect due to false vectors. The authors therefore proposed an outlier detection based on the Delaunay 
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Triangulation and continuity equation. 

Liang et al. [5] proposed a vector validation algorithm based on an artificial neural network and studied the 

influence of velocity gradients on the percentage of detections. An interesting approach based on human vision 

has been proposed by Reiz et al. [6] where an algorithm is presented based on the principles of Gestalt 

psychology and the recognition of continuous curves. 

One of the most sensitive parts in the vector validation is the distinction between outliers and vectors that look 

different from their neighbours because of high gradients. To mitigate this problem, an universal outlier 

detection for PIV data has been proposed by Westerweel and Scarano [7], aiming to extend the median test [1] 

to more general turbulent flows by means of a normalized median test (NMT). More recently, Duncan et al. 

[8] highlighted that this approach is unsuitable for unstructured data, such as in Particle Tracking Velocimetry 

(PTV) or spatial adaptive routines [9], and  suggest to include a distance weighting system. 

In spite of the number of existing vector validation algorithms, a really important issue that has never been 

outlined and dealt with appropriately is the case of clusters of outliers. As stated before, erroneous velocity 

vectors often occur where images are noisy or do not contain enough information; in fact, should and area of 

the flow be low-seeded, it will probably cause outliers to occur in clusters. As far as the authors knowledge, 

all of the existing vector validation methodologies compare each vector with a constant and small number of 

neighbours and because of this limit in the “field of view”, none of them will ever be able to detect big clusters 

of outliers. Furthermore, a small constant number of neighbours can be strongly insufficient to detect the 

validity of a vector, especially in case of strong gradients, causing some vectors to be over-detected. This 

problem is highlighted in Figure 1: on the left side of the figure there is a vector with its closest neighbours: 

looking at a small number of neighbours it is almost impossible to understand if it is correct, in fact, Figure 

1a), shows how these vectors could be perfectly part of a coherent structure with strong gradients, while Figure 

1b) depicts the case where the same vectors are just part of a bigger cluster of outliers. 

 

 

Figure 1 A small detail of some ambiguous neighbouring vectors. An example of these vectors as part of a) a coherent 

structure and b) a cluster of outliers 

 

In this paper, the authors propose a novel algorithm for the vector validation in which the comparison of each 

vector is evaluated with a variable number of neighbours that is dynamically changed according to the 

coherence of the flow. This method not only allows to detect and remove big clusters of outliers from the 

velocity field, but it also allows to decrease the over-detection in case of strong gradients (i.e. correct vectors 

detected as outliers). 

To further improve the detection, the algorithm has been implemented with others enhancements; (1) 

dynamically variable number of neighbours, (2) a distance-based Gaussian weighting system, (4) a new 

approach for the median estimation and (5) magnitude/direction comparison. Furthermore, this method is 

applicable both on structured and unstructured grids, making it perfectly suitable for classic PIV/PTV 

algorithms or any kind of spatially adaptive algorithm. 

To assess the accuracy of this new algorithm in discerning correct vectors from outliers, a Monte Carlo 

simulation has been performed and results are shown in the next sections of this paper. An application to PIV 

has also been implemented to show the impact of this new vector validation on the analysis of experimental 

flow images. 
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2 Methodology 

Human vision can be considered the best tool in discerning outliers from legitimate vectors and its strength 

probably relies in the ability to recognize coherent structures. Human detection starts with a comparison of a 

vector with its closest vicinity and continues extending the neighbourhood until the scrutinised vector is found 

to be part of a coherent region. Obviously, human detection becomes unaffordable when the number of velocity 

fields to be checked is in the order of thousands or more. For this reason, the aim of this new algorithm is to 

emulate human vision through a coherence-adaptive algorithm which recognizes consistent areas in the flow 

and compares each vector with a variable number of neighbours adapted to local flow field coherence. 

The concept of coherence can be tricky to define, especially when dealing with scattered values. In a previous 

work [10], the coherence is defined as the sum of the differences of a vector and its neighbours, normalized by 

the sum of the modules of the neighbours. Although this definition of coherence allows to distinguish coherent 

areas where the velocity field is smooth enough, it is unable to discriminate a region of strong gradients from 

a cluster of false vectors, because it does not take into account vector positions. 

In this paper, the authors argue the condition for a vector to be considered coherent, is that it fits a quadratic 

surface with its eight closest neighbours. It is important to underline that this coherence is not used to discern 

correct vectors from outliers. Instead it is only used to automatically predict the number of neighbours with 

which each vector must be compared. Once this number is known, all of the neighbours are used in the test, 

whether they are coherent or not. For sake of clarity, a group of non-coherent vectors, as those depicted in 

Figure 1, will be compared with a higher number of neighbours in order to understand if they are correct 

(Figure 1a) or they are false (Figure 1b). Therefore, the coherence function cannot be used to discern correct 

vectors from outliers but it allows to vary the number of neighbours in order to detect clusters of outliers. 

The new validation algorithm proposed in this paper has been developed based on the median normalised 

threshold (NMT) test [7]: in a similar manner, a normalised residual is evaluated for each vector of the field 

based on the fluctuation of its neighbours but, in our case, the analysis is evaluated with a variable number of 

neighbours and the fluctuation is evaluated comparing magnitude and direction of each vector instead of the 

components. 

The algorithmic sequence of the proposed validation routine are summarised as: 

1. Coherence check: Evaluating the coherence for each vector of the field through a quadratic regression 

2. Evaluate necessary number of neighbours: Estimating the minimum number of neighbours necessary for 

a reliable comparison, based on the coherence 

3. Calculate the normalized residual: Evaluating the normalized residual of each vector cycling across the 

variable number of neighbours of the previous step 

4. Validate vectors: Discriminating outliers and legitimate vectors by means of a universal threshold for the 

normalized residual evaluated in the previous step 

 

3 Coherence function 

As already stated in the introduction, a vector is considered coherent if it fits a quadratic surface with its eight 

closest neighbours. In particular, the coherence of a vector is defined as the residual of its components 

compared to the parabolic regression of its eight closest neighbours, conveniently normalized. Considering the 

vector 0 0 0( , )u vV  located at 0 0 0( , )x yX  and its neighbours 8, ,1V V  as depicted in Figure 2; the 

objective is to fit a parabolic curve for the components of these vectors using the least squares. For the 

horizontal components, it follows that the parabolic function ( , )x y  is defined as:  

 

 
2 2

0 1 2 3 4 5( , )u ix y a a x a y a xy a x a y u         (1) 

 

where ia  are the unknown coefficients. Equation (1) can be rewritten for the components of every vector, 

yielding: 
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or in matrix form; 

 X a u    (3) 

 

Since the parabolic fitting is performed with nine elements only, a single outlier in the neighbourhood may 

produce a completely wrong parabolic prediction, leading to an erroneous coherence value. To avoid this 

behaviour, vector components are weighted according to a Gaussian function of their variance: 
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where   is a background error (in PIV [7] this value is usually set to 0.1) while med() is the median operator. 

Using these weights, the fitting equation becomes: 

 

    T TX a uX XW W   (6) 

 

where W is the matrix of the weights: 

 

  when 0 ,ij ii ij W wW i     (7) 

 

Once the fitting has been performed and coefficient ia  evaluated, vector 0V  can be compared with its parabolic 

fitting 0 0( , )x yΦ : the coherence C is the residual of the scrutinised vector’s components normalized with the 

median of the magnitudes of the vectors: 
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The final coherence value is a simple mean of the horizontal and vertical coherence. 
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Once the coherence has been evaluated for all the vectors, a threshold allows to differentiate coherent vector 

from non-coherent ones. The threshold has been set to 0.1, so that vectors exceeding 10% of the residual are 

considered non-coherent and vice-versa. This threshold can be changed to adjust the sensitivity of the number 

of neighbours to the coherence of the flow, though the susceptibility of the algorithm to this parameter has 

been experimentally shown to be low. 

 

 

Figure 2 A vector with its eight closest neighbours and a parabolic fitting of the horizontal components 

 

4 Number of neighbours 

The coherence adaptive variable number of neighbours of this algorithm is the key for detecting clusters of 

outliers. In fact, the size of the neighbourhood cannot be set just arbitrarily large, since regions where 

turbulence or strong gradients occur would be over-detected1; on the other hand, a small number of neighbours 

can be insufficient to understand if a vector differs from its neighbours because of strong gradients or because 

it is part of a cluster of false vectors. Consequently, the number of neighbours must be higher only where 

outliers are detected to be clustered, that is, in regions where less vectors are coherent. 

Since the algorithm employs a modified version of median to discern outliers from correct vectors, the authors 

argue that at least 50% of the vectors in the neighbourhood of the scrutinised vector need to be coherent for a 

reliable comparison. 

 

 

Figure 3 Level of neighbourhood on a structured grid  

 

The variable number of neighbours with which each vector must be compared is adjusted through the level of 

neighbourhood L. A value of L = 1 is equivalent to the eight closest neighbours, L = 2 consists of the eight 

neighbours of the eight closest neighbours, and so on. On a structured grid, the number of neighbours N can 

be written as a function of the level of neighbours L as it follows: 

 

                                                      
1 An arbitrarily high number of neighbours would lead a vortex in a uniform flow to be considered as a “cluster of outliers” 
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  
2

12 1N L     (11) 

 

Using the coherence evaluated in the previous step, the level of neighbourhood for each vector of the field is 

progressively increased until half of the neighbours of each vector are coherent. The result of this process is 

shown in Figure 4, where a cluster of outliers is surrounded by coherent vectors: the level of neighbourhood 

gradually increases going towards the centre of the cluster, so that each outlier can be compared with an 

adequate number of coherent neighbours, even though it is surrounded by outliers. 

 

 

Figure 4 Level of neighbourhood evaluated in vicinity of a cluster of outliers. Notice how the level of neighbourhood 

increases going towards the centre of the cluster. 

5 Normalized residual 

The variable number of neighbours discussed in the previous section can be straightforwardly implemented in 

some of the already existing vector validation algorithms, like the Normalised Median Threshold (NMT [7]) 

or the Distance Weighted Normalised Median Threshold (DW-NMT [8]), and results for these algorithms are 

presented in the next sections. 

In this section the authors propose an improved algorithm to evaluate the normalized residual, based on the 

NMT, which allows to further decrease the number of over-detections. In particular, this result is accomplished 

by means of three different innovations; (1) comparison of direction and magnitude instead of vector 

components, (2)a distance-based Gaussian weighting system and (3) a new approach for the median estimation 

 

The normalized residual for a vector  0 0,u v0V  is the combination of its magnitude and direction residuals: 

 

 2 2
0 nR r r    (12) 
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where nr  and r  are the normalized fluctuation of magnitude and direction, 0fluc  is the fluctuation between 

0V  and its neighbours prediction, flucmed  is the average fluctuation of its neighbours, while   is the 

background error, related to the measurement accuracy. Although the expressions of the normalized fluctuation 
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for magnitude and angle have the same form, some differences must be pointed out. Vector 0V  is surrounded 

by a certain number of neighbours 0N , namely   0, 1,2, ... ,i iu v i N iV . First, the median of iV  magnitudes 

is calculated as: 

 

    
2 2

amed , amed ,med i i i in u w v w    (14) 

 

then the magnitude of 0V : 

 

 2 2
0 0 0n u v    (15) 

 

so that the magnitude fluctuation of 0V  can be evaluated as: 

 

 0 0flucn
medn n    (16) 

 

The function amed is the averaged-weighted median, described afterwards. Each neighbouring vector iV  is 

weighted according to a Gaussian function of id , the distance of iV  from 0V : 
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where   is set to 1.24 in accordance with Agüí and Jiménez [11]: 
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The fluctuation of the neighbours flucmed  is evaluated in a similar manner, but using the median instead of the 

averaged weighted median: 

 

  fluc medn
med i medn n    (19) 

 

since the median norm medn  is already evaluated by means of the weighted median, the fluctuation doesn’t 

need to be weighted twice.  The normalized fluctuation of the angle is evaluated in a similar manner, but the 

angle fluctuation and the median angle must be defined first. The angle fluctuation of 0V  is defined as: 

 

  0 0 0fluc min 2 ,med med
           (20) 

 

so that angle differences smaller than   are always considered. The values 0  and med  are the phase of 0V  

and median phase of its neighbours iV . While the former is a simple arc-tangent of the components, a bit more 

attention must be paid for the latter. The median angle could be evaluated just taking the arc-tangent of the 

median of the components, but it would be biased by the magnitude of each vector. Since the magnitude 

fluctuation is already taken into account, neighbouring vectors need to be normalized before evaluating the 

angle. The median angle is then: 
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where: 
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The fluctuation of the neighbours is evaluated as before, using the median instead of the weighted median: 

 

   fluc med min 2 ,med i med i med
           (23) 

 

A further discussion is required for the background error  . As stated before, it is related to the measurement 

accuracy and it depends on the vector field. For PIV, this error is related to the sub-pixel fitting and is usually 

0.1 pixel. This value can be used straight as a background error for the magnitude fluctuation n  , but it can’t 

be used for the angle fluctuation. The minimum angle measurable depends in fact on the magnitude of the 

vector itself. For a vector of magnitude medn , the minimum angle measurable is the angle of the triangle formed 

by medn  and 2 n : 
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Once the normalized residual has been evaluated for all the vectors of the field, non-valid vectors can be 

detected comparing the residuals with a threshold. The value of this threshold can be safely set to 2 [7], where 

higher values lead to a more stringent algorithm and vice-versa. 

6 Averaged weighted median 

One of the innovations introduced in this algorithm to reduce over-detections is a new approach for the median 

estimation. When the normalized residual is evaluated for a scrutinised vector [7] [8], a prediction of that 

vector is estimated through the median of its neighbours. The more accurate the prediction, the more reliable 

the residual. If none of the neighbours were outliers, an interpolation of them would be the best prediction for 

the scrutinised vector. As already shown [1], the presence of spurious vectors among the neighbours strongly 

affects the estimation of the residual, therefore the median is usually proposed as most robust operator. On one 

hand, the median can tolerate up to 50% of the data being wrong, on the other hand the median of a sample of 

values is always one of the values of the sample or the average of two of them. In order to overcome this 

limitation, a new averaged weighted median has been introduced in order to have both a good interpolation 

and robustness against outliers. 

The case of Figure 5 depicts a vector 0V  and its eight closest neighbours iV ; the figure depicts the vectors on 

the left and their magnitudes on the right, sorted from the smallest to the highest. Each neighbour has a different 

weight evaluated according to (17), normalized by the total sum of the weights and depicted through the bar 

width. A new parameter w  called averaging interval is introduced and its range varies between 0 and 1: the 

new median value is the weighted average of the values falling within the interval  w . Values falling on the 

edge of w  are considered only for the part of them within w . It is clear than a value of 1w   degenerates 

into the weighted average, while a value of 0w   is the simple weighted median. 
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Figure 5 On the left: a vector with its eight closest neighbours and its prediction in grey. On the right: graph for 

evaluation of the averaged weighted median of the vectors magnitude. 

 

The main advantage of this new median is that its value is both a weighted interpolation and robust against 

outliers. The vector prediction evaluated for magnitude and direction is shown in grey in Figure 5, and it is 

very close to the scrutinised vector. 

Several tests have been performed to evaluate the effect of w  on the number of under- and over-detections. 

Figure 6 depicts one of those tests and shows how the over-detections strongly decrease with small values of 

w . For as concern under-detections, there is a slight positive effect for small values of w before they start 

being affected negatively, therefore a value of 0.3w   has been chosen for all the tests. The experiment has 

been performed with a Monte Carlo simulation of 3000 independent tests, with a maximum random magnitude 

of 5 and clustering factor of 1, while the percentage of outliers has been kept constant at 15%. 

 

 

Figure 6 Result of over- and under-detections divided by the maximum value, for three test cases, changing the 

amplitude of the averaged weighted median. 

 

7 Numerical assessment settings 

In order to assess this new vector validation algorithm, correct vector fields have been corrupted with random 

outliers superimposed in a Monte Carlo simulation. This kind of test is quite common in vector validation 

algorithms [12], [5]. The outlier detection is very sensitive to the way random vectors are imposed. For our 

purpose, the authors argue that random outliers can be characterized by two parameters; (1) magnitude of 

outliers and (2) clustering factor The magnitude of outliers M is the maximum value of a random number 

multiplying the components of the correct vector being replaced. Suppose vector 0 0( , )u v0V  is going to be 
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replaced with an outlier of magnitude M, then 0V  random components will be evaluated as: 
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  (25) 

 

where Rand( 1,1)  is a random number between -1 and 1. 

The clustering factor fC  is defined as the number of neighbouring vectors randomly imposed: for instance, 

8fC   means random vectors are imposed by groups of 8 neighbours each. A number of 3000 independent 

simulations have been accomplished for each variation of the parameters: tests has been performed varying 

the clustering factor with a fixed magnitude and vice-versa. For this reason, results are presented with two 

different types of plot: detections against clustering factor, parametrized for magnitude and detections against 

magnitude, parametrized for clustering factor. The authors argue that the percentage of random outliers in the 

field only affects the clustering factor, which becomes higher when the percentage is higher but, since the 

clustering factor is explicitly tested, a fixed percentage of 15% of outliers have been set for all the tests. 

 

 
Figure 7 Part of a sample vector field with random outliers over-imposed by clustering factor of: 1 (a), 8 (b) and 32 (c). 

The magnitude M is set to 1. 

  

In order to quantify the results of each validation test, erroneous detection are shown as number of over-

detections wN  (correct vectors detected as outliers) and the number of under-detections mN  (random outliers 

detected as correct vectors). Number of detections are conveniently normalized by the total number of vectors  

(valid and invalid) and the imposed number of spurious vectors  in order to get the ratio of over-detection , and 

the ratio of under-detection  as it follows: 
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o u
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N N

N
R R
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N
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
  (26) 

 

In addition to this, the ratio between mN  and tN , denoted by *
uR , allows a comparison between the over- and 

under-detections. 

The aim of the vector validation should be to minimize both the over- and under-detections: algorithms 

producing zero over-detection but 100% over-detection and vice-versa are obviously useless. Results of the 

new algorithm are compared with the Normalized Median Test (NMT) [7] and the Distance Weighted 

Normalized Median Test (DW-NMT) [8]. In order to stress the importance of the various innovations 

introduced in this algorithm, a modified version of NMT and DW-NMT with a variable number of neighbours 

is proposed as well, and referred as Adaptive Normalized Median Test (ANMT) and Adaptive Distance 

Weighted Normalized Median Test (ADW-NMT). The new method presented in this paper is referred as 
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Adaptive Weighted Angle and Magnitude Threshold (AWAMT). Values of over- and under-detections are 

shown as percentage, the former normalized by total number of vectors in the field, the latter by the number 

of random vector imposed. Under-detection are also presented with the same scale of over-detection to allow 

a comparison. 

Regarding the origin of the vector fields, depicted in Figure 8, two of the three test cases are the result of an 

adaptive PIV algorithm [13] for synthetic images of a time-resolved channel flow2 and an experimental vortex3 

from the PIV challenges. These vector fields have been analysed with specially tuned settings, without any 

vector validation algorithm, and have been manually inspected for outliers. The third test case is a flow field 

resulting from DNS velocity data4, obtained from the Johns Hopkins Turbulence Databases [14]. The first two 

velocity fields lie on a scattered grid, while the latter lies on a structured grid. 

 

a) b) c) 

   

Figure 8 Flow test cases used to assess the vector validation algorithm: a) PIV unstructured channel flow b) PIV 

unstructured vortex and c) DNS turbulent flow 

 

                                                      
2 PIV Challenge (Sept.19-20, 2005, Pasadena, USA), CASE B Time-resolved Channel Flow (Synthetic image, 

B_037/B_038) 
3 PIV Challenge (Sept.14-15, 2001, Göttingen, Germany), CASE A Strong Vortex (experimental image provided by 

Kaehler) 
4 Dataset: isotropic1024coarse; x-range: (1.1781, 1.5650); y-range: (1.1781, 1.5650); z-offset: 0.0055; time: 1.9013 
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Figure 9 Result of simulation varying the cluster size at a fixed magnitude of 0.1 

 

8 Discussion of results 

Figure 9, 10 and 11 show the quantity of under- and over-detection in a case where the magnitude of random 

vectors has been fixed (respectively to 0.1, 1 and 10), while the clustering factor has been changed. The dashed 

lines depict NMT and DW-NMT methods, the grey solid lines depicts their respective version with a variable 

number of neighbours implemented, while the black solid line depict the new method AWAMT. The first result 

that can be noticed in all of the figures is that the variable number of neighbours allows a great enhancement 

of both under- and over-detections in all of the test cases, even without any further improvement. 

For small random outliers in Figure 9, all the results show that the new AWAMT method is able to detect 

outliers better than other methods reaching a lower value both for over- and under-detections. In this first case 

the difference between NMT and DW-NMT methods and their variable neighbours implementation is 

remarkable yet not very strong: this is due to the very small magnitude of outliers that are shrunk more than 

10 times which does not allow a reliable estimation of the vector coherency. On the other hand, the magnitude-

orientation residual elaborated in the new AWAMT algorithm allows a better detection of outliers even though 

they are very small. 
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Figure 10 Result of the simulation varying the cluster size at a fixed magnitude of 1 

 

Figure 10 depicts a case where outliers have magnitude 1, meaning their maximum magnitude is the same of 

the correct vectors being replaced. Also in this case, the new method shows overall a better behaviour: in the 

case of the vortex ANMT have slightly less under-detections, yet much more over-detections, while ADW-

NMT has slightly the same over-detections, yet more under-detections. From this magnitude on, the difference 

between the NMT and DW-NMT standard algorithms and their variable neighbour implementations becomes 

even more remarkable, showing the better influence of this part of the algorithm on the detection. 
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Figure 11 Result of the simulation varying the cluster size at a fixed magnitude of 10 

 

The last case in Figure 11 depicts the results where outliers have a maximum magnitude that is ten times bigger 

than the actual vector field. As already stated, in this case the difference between the variable-neighbours 

algorithms and the constant-neighbours algorithm becomes even more remarkable. This behaviour is 

corroborated by results shown in Figure 12, where the clustering factor is fixed to 8 and the magnitude of 

outliers is changed continuously: when the outlier intensity becomes very high all the variable-neighbours 

algorithms tend asymptotically to a constant value both for over- and under-detections that is much smaller 

than the constant-neighbours algorithm. 
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Figure 12 Result of the simulation varying the magnitude of random vectors at a fixed clustering factor of 8 

 

The last case in Figure 12 shows a slightly higher number of both over- and under-detections for the new 

proposed algorithm AWAMT that, although small, must be discussed. This result is not related to the use of a 

structured grid in the test case but with the flow itself. Due to the very small scale of the original flow, it has 

been sub-sampled selecting every other vector, in order to get a velocity field large enough to contain some 

vortices yet having a reasonable number of total vectors suitable for the Monte Carlo simulation. This process 

has led to a vector field containing weird vectors that, indeed, seem to be incoherent. The algorithm detects 

those vectors as outliers, but they result as over-detected because they have not been imposed as outliers. 

Further tests evaluated with classic PIV data lying on a structured grid corroborates the results of the previous 

test cases. 

9 Application to PIV 

Algorithms for the vector validation can have a strong influence on the outcome of a PIV analysis, especially 

because of its iterative implementation. To assess the new vector validation algorithm in a real application it 

has been implemented in a PIV routine and used to analyse experimental particle images. Measurements were 

conducted behind a circular disc placed perpendicular to a 30 m/s flow in the low turbulence wind tunnel of 
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the University of Bristol. This tunnel attains turbulence levels below 0.05% and has an octagonal test section 

of 0.8 m×0.6 m. The disc had a thickness of 6mm and a diameter of 6cm resulting in a negligible blockage of 

0.16% at a diameter-based Reynolds number ReD of 118∙103. Six perforations, each with a radius of 3.87mm, 

were placed at a radius of 1.08cm to establish a porosity β (=open/closed area) of 0.11.  

PIV measurements were performed with a two-dimensional two-component Dantec Dynamics PIV system. 

Seeding was generated by atomizing a mixture of PEG-80 and water producing 1μm tracer particles. 

Illumination was provided by a Litron 200mJ laser, which was optically transformed into a 1mm thick laser 

sheet across two pores in the symmetry plane of the disc. 

 

 

Figure 13 Disc used in the experiment for the PIV analysis 

 

In order to ensure a fair comparison, vectors detected as outliers are always replaced with the same technique, 

substituting the wrong components with the median of their closest neighbours, so that the only difference 

between the two implementations is the number of vectors detected. A number of 430 image pairs were 

analysed with both NMT and AWAMT validation algorithm and a quiver plot for the average of the velocity 

field is shown in Figure 14. 

 

 

Figure 14 Quiver plot of the resulting velocity field from the analysis of 430 synthetic images. The disc is placed on the 

right side of the image and the flow is going from right to left 

 

The number of replacements for each vector, in the final iteration of the PIV process, has been stored for both 

the algorithms, and the result for all the images is shown in Figure 15. Images clearly show that the new 

AWAMT has a much lower number of detections, especially in the areas were gradients are stronger. It can 

also be noted that NMT systematically over-detects vectors on the edges of the image: on the borders, in fact, 

less information on velocity is available and NMT tends to over-detect vectors. In the new AWAMT this issue 
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is mitigated by the variable number of neighbours and the better estimation of a prediction through the new 

averaged weighted median. 

 

 

Figure 15 Sum of the number of replacements for each vector of the field across 430 synthetic images analysed 

 

Figure 16 shows a comparison of the velocity profile (horizontal displacements vs. vertical position) at the 

vertical section highlighted in Figure 14.  In this area the air flows through the two holes of the disc and the 

velocity profile should be symmetrical. Although the two velocity profiles are quite close, the new AWAMT 

validation algorithm produces a final velocity field that is more symmetrical than NMT. This is likely due to 

the less over-detection (and therefore a less smoothing effect) of AWAMT compared to NMT, especially when 

gradients are stronger. 

 

 

Figure 16 Horizontal pixel displacement profile along dashed line in Figure 14 

 

10 Conclusions 

Velocity fields obtained from PIV image analysis techniques are always contaminated with erroneous vectors 

and such outliers often appear in clusters as a result of underlying degraded image quality or strong gradients 

in flow velocity. Existing validation methodologies for instantaneous PIV velocity fields are commonly based 

on comparison of the scrutinised vector with its immediate neighbourhood. As a result such methods are unable 

to detect false vectors when clustered and are moreover prone to mistakenly invalidate correct vectors. For this 

reason a novel adaptive method for outlier detection has been proposed in this paper with the aim to render 

validation processes more robust in the presence of outlier clusters. The detection of false vectors will thereby 

be improved and over-detection can be reduced without the need to fine-tune inherent parameters. 

The proposed method emulates the process of outlier detection in human vision, whereby the considered 

neighbourhood for comparison is a-priori extended until the database is sufficiently reliable for a posteriori 

validation tasks. Selection of the appropriate vicinity is dictated by a measure of coherency. The latter is 
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quantified as the discrepancy between local velocity values and a parabolic regression. For each vector the 

neighbourhood is automatically enlarged until at least half the enclosed vectors are coherent. To further 

improve the validation algorithm, vector comparison is performed on the basis of magnitude and direction 

instead of the traditional horizontal and vertical vector components. To limit the potential diversity in vector 

direction, the acceptable background fluctuation level is automatically adjusted to the vector magnitude and 

constitutes a second feature of adaptivity. Moreover, applicability to both structured and unstructured data 

grids is ensured by the implementation of a distance-based Gaussian weighting system. 

The algorithm has been assessed with Monte-Carlo simulations using three flow fields; an isolated vortex, a 

channel flow and a DNS simulation of isotropic turbulence. The former two cases were obtained from the PIV 

challenges while the latter originated from the John Hopkins Turbulence Database. The flowfields were 

contaminated with outliers of varying magnitude and degree of clustering. The common outlier detection 

schemes resulted in high numbers of undetected outliers (under-detection) and number of wrongly invalidated 

correct vectors (over-detection). Depending on the amount of clustering and outlier magnitude as much as 80% 

of the spurious vectors could remain undetected, while 3% of the total vectors could be over-detected. 

Implementation of the coherency adaptivity dramatically improved the outlier detection, potentially reducing 

the under-detection by as much as one-fourth for small outlier magnitudes or even one-tenth for larger 

magnitudes. These findings advocate coherency adaptivity to be a powerful tool to improve the performance 

of existing validation routines even in the presence of outlier clusters. The concept is computationally simple 

and can be easily implemented. Validation on the basis of angle and magnitude enabled a further lowering of 

the missed outliers and mistaken outliers though improvements were only observed at low outlier magnitudes. 

Overall the proposed validation method was the most robust and general without any reliance on user-defined 

parameters. Validation performances consistently surpassed the traditional routines and were better or at least 

on a par with the adaptivity enhanced methodologies.  

When implemented in a standard PIV image analysis process and applied to experimental PIV images of a 

porous disc’s near-wake, the novel outlier detection routine was shown to drastically reduce the amount of 

over-detection. As a consequence, a gain in spatial resolution in term of velocity gradient across the shear layer 

was noticeable as well as an increased flow accuracy.  
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