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Abstract We have developed models that allow the description of digital in-line holography experiments with 

complex imaging systems, in terms of optical transfer matrices. The objects can be opaque, transparent or semi-

transparent circular particles. In this presentation, we present the description of non-uniform objects whose 

transmission coefficient is decomposed on a basis of Zernike polynomials. Analytical expressions of the 

holograms are obtained. Digital holograms are reconstructed using the 2-dimensional fractional-order Fourier 

transform. The formalism is used to extract the 3D position of micrometric opaque and transparent inclusions in 

a suspended millimetric droplet. In a second step, a long-exposure time set-up is used. From the recorded 

holograms, the reconstruction of sections of the trajectories of a micronic particle within the droplet, using a sole 

hologram and a sole reconstruction, are shown. The exposure time is optimized in order to conserve a sufficient 

Signal to Noise ratio. In a last experiment, 50 nm SiO2 nanoparticles are inserted in the droplet. A heating point 

is created in the droplet using a frequency-doubled Nd:YAG laser. A layer of vapor is then created  around the 

nanometric inclusion. It grows into a cavitation air bubble of several micrometers whose position will be 

detected and reconstructed using our digital-holography set-up, and the formalism that we have developed. 

These developments should have important applications for the detection of nanoparticles, or for the 

visualization of freezing processes in a droplet.  
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1  Theoretical background on digital holography  

The detection and characterization of particles inside droplets play an important role in many areas such as 

biology, climatology, public health microfluidics. In this study, the characterization of inclusions inside a 

water droplet is investigated by Digital In-line Holography (DIH) [1]. Digital holography has now 

applications in many domains from investigation of particles in flows [2-8], to visualization of cells in 

biology or medicine [9], to phase contrast metrology [10-12], or to detection of nanoparticles [13]. This 

technique will be shown to allow the measurement of size, 3D location and trajectory of inclusions in a 

droplet. Digital Holography is a non-invasive technique which consists of a laser, the object under interest 

and an electronic array sensor (as a CCD sensor). The in-line configuration allows the design of a simple set-

up with a relatively low number of optical elements. The set-up that will be considered in this section is 

reported on figure 1. A Gaussian laser beam is emitted by a laser. It is sent toward different optical elements 

and focused in a suspended millimetric droplet. The in-line hologram is then recorded on a CCD sensor. 

From theoretical point of view, this set-up can be described using a scalar diffraction model [14-16]. The 

expression of the electric field in the plane of the sensor can be written: 
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where  is the wavelength of the laser beam. ℓ is the optical path between the particle and the CCD sensor. . 

 𝑇(𝜉, 𝜂) is the transmission coefficient of the particle.  𝐸𝑝(𝜉, 𝜂) is the expression of the incident gaussian 

beam in the plane of the CCD sensor. It is given using the classical formula of Gaussian beam propagation. 

Its expression could thus be written using the coefficients of the optical transfer matrix between the initial 

plane of the laser and the plane of the particle :  𝐴1
𝑥, 𝐵1

𝑥, 𝐷1
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, are the coefficients of the optical transfer matrix from the plane of 

the particle to the plane of the CCD sensor.  
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Fig. 1 Digital In-Line Holography set-up 

 

The most complex part is to evaluate correctly the transmission coefficient 𝑇(𝜉, 𝜂)  of the particle, and then 

the evaluation of integral (1). With this formalism, the droplet appears just as an optical element of the whole 

set-up. It is taken into account through the appropriate definition of the transfer matrices  𝑀1
𝑝

  and matrices 

 𝑀2
𝑝

  (with p = x or y). Note that the x and y matrices are identical when the elements of the system are 

spherical, and the droplet itself is spherical. The x and y matrices are different when the optical system 

contains cylindrical optical elements or an ellipsoidal droplet. We have developed theoretical studies where 

the transmission coefficient is expanded over a basis of Zernike polynomials. We can thus describe a wide 

range of particles (opaque, semi-transparent, transparent, aberrating particles). Analytical expression of  

 𝐸𝑝(𝜉, 𝜂) can then be obtained, which depend on the different parameters of the set-up [17,18]. 

The reconstruction is then performed using the 2 dimensional fractional Fourier transform (2D-FRFT) whose 

definition can be found in previous reference [14]. The numerical reconstruction can be viewed as a 

numerical refocusing on the diffracting element (particle inside the droplet in this study). 

Experimentally, the laser used is a Continuous Wave, fibered-laser diode operating at 25°C, and emitting at 

wavelength 642nm (LP642-SF20, THORLABS). 

 

2 Digital reconstruction of micronic inclusions in a millimetric droplet 

a) Opaque inclusions in a bubble 

 

Depending on the inclusion introduced into the droplet, different transmission coefficients  𝑇(𝜉, 𝜂) have to be 

considered. The most simple case is when the inclusion is a circular opaque particle. In this case, figure 2 (a) 

shows a simulated hologram of 20µm opaque particles dispersed in a millimetric water droplet. The 

hologram of Fig. 2(a) has then been numerically reconstructed by using an optimal 2D-FRFT. Fig. 2 (b) and 

is the optimal reconstruction where the different opaque particles appear. 
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                             (a)                                                                                                  (b) 

Fig. 2 Simulated hologram of 20µm particles (a) and optimal reconstruction (b) 
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b) Transparent microsphere in a bubble 

 

If the inclusion is a transparent sphere, the transmission function has to be adapted to this new case. Figure 

3(a) shows an experimental hologram while figure 3(b) shows the optimal reconstruction of the inclusion. In 

this case, the reconstructed object is characterized by a brilliant peak in the center of the opaque circle. This 

is confirmed by figure 4 that shows the x-axis and y-axis profiles of the reconstructed object. 

 

           

Fig. 3 Digital In-Line Hologram of a 20 m glass microsphere located in a droplet and its optimal reconstruction 

 

 

 

Fig. 4 x-axis and y-axis profiles of the reconstructed microsphere. 

 

This case can be described theoretically by modelling the microsphere as a small lens introducing a quasi-

spherical phase. Experiments are then well corroborated by the simulations [17]. 

 

c) Air microbubble in a droplet 

 

If the inclusion is an air bubble, the transmission function has to be modified again. It is illustrated on the 

figure 5. As the index of air is smaller than the index of water, the bubble acts as a lens in its center, and as 
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an opaque ring on its border (due to total reflection). The transmission function has then to be described by 

as a quasi-quadratic phase component  (for the center of a bubble) combined to an opaque ring [18]. An 

exemple of experimental result will be given in section 4 when detecting nanoparticles. 

 

 

Fig. 5 Bubble in a liquid (reflected and refracted light) 

 

 

3 Long exposure time experiments for visualization of the trajectory of inclusions 

When the exposure time is much longer than the time necessary for grabbing the particle at one location, the 

diffraction pattern is spread along the trajectory of the particle [19,20]. Fig. 2(a) shows an experimental 

hologram recorded when the exposure time is 0.15s. After optimal reconstruction, we can further observe the 

trajectories of a given inclusion, which corresponds to the addition to the different axial positions of the 

inclusions. From the trajectory of the particles and the value of the exposure time, we can finally evaluate the 

transverse velocity of the inclusions. In this experiment, the moving particles inside the droplet are 20µm 

circular opaque particles. The laser is the CW- fibered laser-diode previously mentioned.  

In this case, figure 6 (left) shows an experimental hologram recorded with the CCD sensor. The hologram 

has then been numerically reconstructed by using an optimal 2D-FRFT for one particle (in the red circle). 

The trajectory of the particles and its transverse velocity can be evaluated from this reconstruction. At this 

stage, the accuracy in numerical reconstruction process is not sufficient to evaluate the longitudinal velocity 

of the particle. The exposure time has to be optimized in order to conserve a sufficient Signal to Noise ratio 

[20]. 

         

Fig. 6 Experimental hologram of 20 m inclusions in a millimetric droplet using a long exposure time (left) and optimal 

reconstruction of one of the particles (right). 
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4  Detection of nanoparticles in a millimetric droplet 

We consider now the set-up of figure 7. A laser beam (emitted by a fibered-laser diode) is collimated and 

then focused in the vicinity of a suspended water droplet using a microscope objective. The wavelength of 

this beam is 642 nm. The light is then collected with a second microscope objective and a CCD sensor is  

positioned in order to record digital in-line holograms. The diameter of the water droplet is 1.5 mm (with 

refractive index 1.33). Nanoparticles (with a calibrated diameter of 50 nm) are introduced into the droplet. 

The droplet is then heated using a frequency-doubled, pulsed Nd:YAG laser (pulse duration 5ns). Heating a 

nanoparticle creates a surrounding microbubble. The hologram of this bubble is recorded on the CCD sensor. 

The microbubble is finally reconstructed using a 2D-FRFT operation. Figure 8 shows a typical experimental 

hologram recorded with this set-up. The hologram created by a microbubble is observed in the red frame. 

This hologram is then optimally reconstructed using 2D-FRFT. The experimental reconstruction is presented 

in figure 9 (left). It is characterized by an opaque disk with an intense peak in its center, in good accordance 

with theoretical predictions (right) that could be done modelling the microbubble as described in section 2.c. 

A radial profile of the reconstructed micro-droplet is presented in figure 10. From the value of its width and 

the value of the magnification factor introduced by the microscope objective Obj2and the output surface of 

the droplet itself, the size of the microbubble can be deduced. This indirect detection method is particularly 

efficient. Note that it is possible to estimate the size of the nanoparticles from the size of the microbubble 

and the characteristics of the laser beam [21,22]. 

 

 

 

 

 

Fig. 7 Experimental digital in-line holography set-up to detect nanoparticles in a droplet 
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Fig. 8 Typical experimental hologram obtained after heating of a nanoparticle in the droplet 

 

 

 

Fig. 9 Optimal reconstruction of the micro-bubble: experimental (left) and corresponding simulation (right) 
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Fig. 10 Radial profile of the reconstructed micro-bubble 

5 Conclusion 

We have developed models that allow the description of digital in-line holography experiments with complex 

imaging systems. The scattering elements under study can be either opaque, transparent or semi-transparent 

particles. Digital holograms are reconstructed using the 2-dimensional fractional-order Fourier transform. 

The formalism is used to reconstruct micrometric inclusions in a suspended millimetric droplet. Their 3D 

position in the droplet can be extracted. Long-exposure time experiments allow the reconstruction of sections 

of the trajectories of these micronic particle within the droplet using a sole hologram. Finally, 50 nm SiO2 

nanoparticles are inserted in the droplet. A heating point is created in the droplet using a frequency-doubled 

Nd:YAG laser, creating a layer of vapor around the nanometric inclusion. A cavitation air bubble of several 

micrometers can then be reconstructed using digital holography, which allows an indirect detection of the 

nanoparticles. These developments should have important applications for the detection of nanoparticles. 
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