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Abstract This study investigates by Particle Image Velocimetry (PIV) the wavy Taylor vortex flow that 
develops in the gap between concentric rotating cylinders of low aspect ratio and low radius ratio, which is a 
configuration relevant to oil bearing chambers in turbomachinery. The configuration is characterised by a larger 
annular gap width than the one typically used in journal bearings and by a Taylor number (𝑇𝑇) of 2.47 x 106, 
which is 1000 times higher than the first critical Taylor number. It is found that the non-uniform axial spacing of 
the vortex cores induces an asymmetric radial velocity profile and an inflected axial velocity profile close to the 
cylindrical walls. The outflow at the centre of each pair of Taylor vortices that make up a vortex cell is strong 
and it is characterised by a sharp radial velocity peak. The inflow between pairs of Taylor vortex cells is 
unconventional in that it is characterised by pairs of confluent streams from the outer cylinder that merge 
towards the inner cylinder. These results form a body of experimental evidence on the flow features that may 
occur in engineering practice in oil bearing chamber flows, with relevance to lubrication and wear. 
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1  Introduction 

The study of the flow in a wide gap between concentric rotating cylinders stands to benefit important 
engineering applications, such as lubrication oil bearing chambers in gas turbines and in the solvent 
extraction process industry. The appearance and the development of flow instabilities between rotating 
concentric cylinders was first studied experimentally and analytically by Taylor [1]. Since the time Taylor [1] 
established the threshold at which a steady Couette flow becomes unstable, several studies explored the onset 
of this instability in differently rotating cylinders by modelling and experimentation. The main non-
dimensional parameters that determine this threshold are the Taylor number, or the equivalent Reynolds 
number, the ratio of the two radii = 𝑅𝑖/𝑅𝑜, and the aspect ratio Γ = 𝐿(𝑅𝑜 − 𝑅𝑖) . The Taylor number is 
defined as 
 
𝑇𝑇 = 2𝜂2𝑑4

1−𝜂2
�Ω1
𝜈
� (1) 

 
and the equivalent Reynolds number is defined as 
 
𝑅𝑅 = Ω1𝑅𝑖𝑑

𝜈
 (2) 

 
where 𝑅𝑖 is the radius of the inner cylinder, 𝑅𝑜 is the radius of the outer cylinder, 𝐿 is the axial length of the 
cylinders, Ω1 is the rotational speed of the inner cylinder, 𝑑 is the gap width, which is the radial distance 
between the outer surface of the inner cylinder and the inner surface of the outer cylinder, and 𝜈 is the fluid 
kinematic viscosity. 
 
Based on these parameters, different flow states have been identified by [2]-[7] as the Taylor number 
increases beyond the initial threshold. The initial steady Couette flow changes to axisymmetric time-
independent Taylor vortices (Taylor Vortex Flow) and subsequently to non-axisymmetric unsteady time-
dependent wavy Taylor vortices (Wavy Vortex Flow) [1]-[2], [8]-[10]. The non-axisymmetric unsteady time-
dependent wavy Taylor vortices have been studied experimentally by [2], [8]-[9], [11]-[14]. Models of the 
flow dynamics have been developed by [15]-[18]. The simple geometry of two coaxial cylinders lends itself 
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to analytical and numerical treatments of this problem. This has generated many contributions on the 
transition between the different flow regimes and the interested reader is referred to [19]-[21] for a review of 
this topic. The Wavy Vortex Flow (WVF) by further increases in Taylor number is predicted to change to 
Modulated Wavy Vortex Flow (MWVF) and subsequently to Turbulent Taylor Vortex Flow (TTVF) [5]. 
 
Many of the early investigators on this flow instability focused their research on configurations with a radius 
ratio over the range 0.60 ≤ 𝜂 ≤ 0.95 and an aspect ratio Γ ≥ 20, which is likely to have been driven by the 
modelling simplifications that can be used in the cases of small gap (𝜂 → 1) and large aspect ratio. Adebayo 
and Rona [22] explored the flow regime at a high Taylor number in a flow configuration with the radius ratio 
over the range 0.40 ≤ 𝜂 ≤ 0.60 and aspect ratio over the range 7 ≤ Γ ≤ 12. They documented by PIV the 
presence of an orderly flow with clearly defined time-mean wavy Taylor like vortex structures that persist 
over the Taylor number range 258 x 103 ≤ 𝑇𝑇 ≤ 10.93 x 106, where Modulated Wavy Vortex Flow or 
Turbulent Taylor Vortex Flow would have been expected based on the indications by Andereck et al. [5]. 
This orderly high Taylor number flow is substantially unexplored and the details of this flow in the 
meridional plane have not been addressed by previous work. 
 
The present investigation wishes to provide a detailed experimental physics-based interpretation of the flow 
across the full meridional plane. The large gap width between the cylinders motivates detailing the axial and 
radial velocity profiles close to both the inner and outer cylinder surfaces, as well as at the cylinder gap mid-
span, so that the radial variation in the trends is made explicit. The large gap width is also likely to allow 
greater freedom in the location of the vortex centres. This hypothesis is tested by identifying the vortex 
centre positions in the PIV vector maps. For this investigation, the authors have developed a bespoke PIV 
illumination setup that allows the acquisition of velocity vector maps over the full meridional plane. This 
arrangement is likely to be of broader interest to the PIV community. 
 
Having established the persistence of the Taylor vortices by experimental observation in [22], this paper 
focuses on describing the details of the features of this flow. This paper does not address the mode staging 
process from Couette flow to this flow regime or from this flow regime to higher order instabilities, since 
this paper is about characterising the flow at this flow regime only. A more in-depth discussion on mode 
staging is outside the scope of this paper and the interested reader is referred to [21] for an insight into this 
topic. 

2  Experimental facility and experimental procedure 

Particle Image Velocimetry (PIV) is used to characterise the flow features emerging in the low radius ratio 
and low aspect ratio cylinder assembly, in which the inner cylinder is rotating and the outer cylinder is fixed. 
 
Figure 1 shows a schematic of the experimental setup and of the instrumentation. The test rig centrepiece 
consists of a rotating inner cylinder and a stationary outer cylinder. The flow is illuminated by a laser sheet, 
imaged by a CCD camera, and analysed by the Dantec Dynamic Studio PIV software version 2.30. The main 
test rig specifications for this experimental study are summarised in table 1 and a more extensive 
descriptions of the experimental rig is given in [22]. 
 

 

(a)                                                                    (b) 
Fig. 1 (a) PIV experimental arrangement and (b) view from the laser side 
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The layout of the PIV equipment used for this study consists of three sections as shown in figure 1(a). The 
laser sheet creation section comprises of a two-cavity double-pulsed Nd:YAG Litron L Nano laser and of the 
laser sheet optics. A trigger rate of 4 Hz is used to generate the light sheet. A plano-convex spherical lens 
with an anti-reflective coating is positioned between the laser and the test section as shown in figure 1(a) to 
enable concurrent PIV measurements in the rectangular areas of illuminated flow either side of the inner 
cylinder. This makes the PIV setup unique in the context of the PIV application to Taylor vortex flows. 
 

Table 1 Geometry of the test case 
Inner cylinder 

length (m) 
Outer cylinder 

length (m) 
Inner cylinder outer 

diameter (m) 
Outer cylinder inner 

diameter (m) 
Gap width (m) 

0.5 0.52 0.05 0.114 0.032 
 
A Dantec Dynamics Studio seeding generator, model 10F03, is used to atomize a mixture of 20% 
polyethylene glycol (PEG600) and 80% water to produce seeding particles. The flow is imaged by a Dantec 
Dynamic Studio FlowSense 4M CCD camera that is placed at a right angle to the light sheet, as shown in 
figure 1(a). The resolution of the camera is 2048 x 2048 pixels with a 60 mm AF Micro Nikon image lens, 
operated at a frequency of 4 Hz with an f/4 aperture. The CCD camera resolution of 2048 x 2048 pixels with 
a field of view of 250 mm gives a spatial resolution of 0.122 mm/pixel. 
 
The adaptive correlation algorithm of Dantec-Dynamics Studio PIV software version 2.30 was used for the 
cross-correlation during image processing of raw particle image pairs. The initial starting interrogation area 
was 32 x 32 pixel, ending with 16 x 16 pixel interrogation areas with a 50% overlap. Validation algorithms 
were applied to the raw velocity vector map to detect and remove erroneous vectors and produce a validated 
vector map. 
 
PIV measurements for the test case specified in table 1 are conducted along a 0.25 m axial length of annulus 
between the rotating inner cylinder and the stationary outer cylinder. The field of view and the non-
dimensional flow parameters for the test case are summarised in table 2 and in table 3 respectively. 
 

Table 2 Experimental field of view geometry 
Axial length of the 

view area  
Radial length of the view 

area  
Aspect ratio 

Γ 
Radius 
ratio 𝜂 

Clearance 
ratio 

0 ≤ 𝑋/𝑅𝑖 ≤ 10 -2.28 ≤ 𝑟/𝑅𝑖 ≤ 2.28 7.81 0.44 1.28 

 
Table 3 Flow test conditions 

Angular 
speed (rpm) 

Tangential 
speed (m/s) 

Taylor number 
𝑇𝑇 

Reynolds 
number 𝑅𝑅 

Pressure 
(mmHg) 

Temperature 
(oC) 

500 1.31 6.47 x 106 2.87 x 103 759.5 22.8 

 
Measurements are taken as the inner cylinder is rotated at a constant angular speed Ω1 of 500 rpm. The 
corresponding inner cylinder tangential speed is detailed in table 3. The Taylor number, aspect ratio and 
radius ratio fall within the parameter space associated to the orderly wavy Taylor like vortex structures 
identified by [22]. The average room temperature during the experiments was 22.5 ±0.5 °C. Since the 
temperature excursion during the experiments was ±0.5 °C, the results have not been corrected for thermal 
effects. 
 
The seeding particles in the test section were illuminated by a light sheet of approximately 1 mm thickness 
shone through the slit as shown in figure 1. One hundred image pairs were acquired. The time interval 
between the two frames was 1000 μs. The statistical processing of the ensemble of 100 instantaneous 
velocity fields, data validation, removal of erroneous data, replacement of removed data, and data smoothing 
was carried out using Dantec Dynamic Studio software. 
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The convergence of the PIV data has been assessed by testing whether a certain number of PIV raw particle 
image pairs were enough to obtain a vector map average with a low statistical uncertainty. By averaging 
between 100 and 120 images, the mean relative uncertainty in the PIV velocity was found to become nearly 
constant at approximately 5.5%, suggesting that taking more PIV data was unlikely to change this result 
significantly. Based on this result, the PIV mean velocity fields obtained from averaging 100 instantaneous 
vector maps were taken as statistically converged. 

3  Characteristics of the flow regime 

This paper is concerned with documenting closely the detailed flow features of the flow regime observed 
across the meridional plane of the coaxial rotating cylinders with aspect ratio Γ = 7.81 and radius ratio 𝜂 = 
0.44 tested at the high Taylor number 𝑇𝑇 = 6.47 x 106. Specific attention is given to the fluid dynamics 
observable from the PIV measurement. All the velocity fields have been normalised by the inner cylinder 
tangential speed Ω1𝑅𝑖. The axial length in the PIV results has been normalised by the inner cylinder radius 
𝑅𝑖 for consistency with the view area normalisation reported in table 2. 
 
Figure 2 displays the normalised ensemble averaged velocity vector maps obtained from 100 pairs of PIV 
images in the meridional plane of the annulus. Figure 2 shows that the ensemble averaged flow is dominated 
by a typical Taylor vortex pattern over the entire measurement area. As the inner cylinder is rotated at a high 
Taylor number, the centrifugal force due to the rotation of the inner cylinder is greater than the pressure 
gradient due to the stationary outer cylinder wall. This imbalance between the two forces causes the vortex 
centres in figure 2 to be shifted towards the wall of the outer cylinder as the centrifugal force pulls the fluid 
away from the rotating inner cylinder. 
 

 
Fig. 2 Normalised time average of the velocity vectors from the PIV measurement in the meridional plane of the 

annulus, Γ = 7.81, 𝜂 = 0.44. The reference velocity vector is 0.5Ω1𝑅𝑖 
 
Along the axial direction of the PIV measurement view area, which is 10 𝑅𝑖 in length, the velocity field in 
figure 2 shows four pairs of vortices. The number of vortices was shown by [22] to be a function of the 
aspect and radius ratios at this wavy-like high Taylor number flow regime. The radial motion induced by the 
Taylor vortices convects the fluid with high azimuthal momentum near the rotating inner cylinder radially 
outward, creating an outflow region between two adjacent vortices in each vortex pair. Similarly, low speed 
fluid near the stationary outer cylinder is convected radially inward, creating an inflow region between two 
adjacent pairs of vortices. This redistributes the angular momentum of the fluid across the annulus. The 
consequent redistribution of flow mass across the annulus affects the inward flow and the outward flow 
velocity distribution. Thus, the radial outflow between the vortices is stronger than the radial inflow, as 
evidenced by the length of the velocity vectors in figure 2. 
 
A distinct pattern of the flow features in the present study is the spatial oscillation of the Taylor vortices 
resulting in the radial and axial displacement of the vortex centres. The inward radial component of the 
velocity vectors at the end-walls is lower than that at the other inflow regions of the annulus, due to the wall 
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shear stress at the left and right end walls. This affects the location of the Taylor vortices closest to the end 
walls that positions themselves more inbounds to allow for the displacement thickness effect over the 
adjacent end wall. This adjustment in position is cascaded to the more inbound vortices. The amplitude of the 
spatial oscillation of the vortex centres is analysed in detail in the following section. 

4  Spatial oscillation of the vortex centres 

The spatial oscillation of the vortex centres is analysed from the ensemble averaged velocity vector maps in 
figure 2. The vortex centres are defined in this paper as the locations where the meridional plane fluid 
velocity equals to zero in the annulus of the cylinder, excluding the wall boundaries where no-slip conditions 
apply. In this paper, the coordinates of the Taylor vortex centres are determined by the cross-sectional lines 
algorithm described by [23], which is based on obtaining the difference between vortex induced velocity 
extrema. The axial coordinate 𝑋𝑐 and the radial coordinate 𝑟𝑐 of each vortex centre are then used to indicate 
the centres of the vortices shown in figure 3. Figure 3 confirms the streamwise variation in the radial 
positions of the Taylor vortex centres along the length of the cylinders identified in figure 2. In Figure 3, the 
vortex centres of each Taylor vortex pair sit closer together than the vortex centres between neighbouring 
vortex pairs. This creates a difference in the vortex induced velocity. 
 

 
Fig. 3 Velocity vectors showing the centre of the vortices in open and filled circles on the meridional plane, Γ = 7.81, 𝜂 

= 0.44. The reference velocity vector is 0.5Ω1𝑅𝑖 
 
Figure 4 shows the radial spread of the vortex centres in the meridional plane across both the lower and the 
upper channels (𝜃 =  ±𝜋/2). In figure 4, open and filled symbols are used to identify the vortex centres at 
𝜃 =  ±𝜋/2. The abscissa in figure 4 has been normalised by the inner cylinder radius 𝑅𝑖, while the ordinate 
is normalised by the cylinder gap width 𝑑. 
 
By comparing the vortex centres in the lower and upper channels in figure 4, a small variation in the axial 
position of the vortex centres between 𝜃 = 𝜋/2  and 𝜃 = −𝜋/2  is noticeable. In figure 4, many of the 
vortices display a larger variation in the radial location of the vortex centres than the variation in their axial 
location. This feature is noticeable both at 𝜃 = 𝜋/2 and at 𝜃 = −𝜋/2. The radial variation is attributed to the 
flow regime at which this investigation was conducted and to the tolerance in setting the end walls 
orthogonal in the experimental arrangement. In [24], a conventional Taylor vortex flow was modelled with 
perfectly orthogonal end walls in a co-axial cylinder set-up at the same running conditions as this PIV 
experiment. The numerical results predict a significantly smaller radial variation of the vortex centres. 
Similar results are obtained by experimental and numerical modelling in [25]. The numerical viscosity that is 
intrinsic in the flow solver prevented the growth of secondary instabilities that the flow requires for staging 
to a higher Taylor mode, such as the wavy flow like structure observed in this PIV experiment. The 
numerical model of [24] predicted conventional Taylor vortices in the form of an array of counter-rotating 
vortex pairs with their vortex centres approximately aligned along the gap mid-span. The greater radial and 
axial variation in 𝑋𝑐 and 𝑟𝑐 in this present work is therefore a feature associated with the flow regime in this 
test case. The larger radial spacing near the end-wall is a consequence of wall boundary condition on the 
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vortex centre distribution in addition to the flow regime type in this test case. These observations stand 
whether the vortex radial and axial coordinates are stated as dimensional or non-dimensional. 
 

 

Fig. 4 Axial and radial position of vortex centres in the meridional plane with data spread bands about the vortex centre 
mean value from PIV, Γ = 7.81, 𝜂 = 0.44 

 
The horizontal dashed lines toward the top and bottom of figure 4 represent respectively the maximum and 
minimum limits of the spread band about the mean radial position of the vortex centres. The standard 
deviation of the radial position of the vortex centres was used to size the spread band, assuming a normal 
distribution. Based on the dimensions of the experimental domain, the normalised radial position between 
the inner and the outer cylinders is in the range 0 ≤ (𝑟 − 𝑅𝑖)/𝑑 ≤ 1, which means the gap mid-span of the 
annulus (𝑟 = 𝑅𝑖 + 0.5𝑑) is located at (𝑟 − 𝑅𝑖)/𝑑 = 0.5. Figure 4 shows that all vortex centres lie above the 
mid-gap 𝑟 = 𝑅𝑖 + 0.5𝑑. In figure 4, the area occupied by the vortex centres spreads over the range 0.54 
≤ (𝑟 − 𝑅𝑖)/𝑑 ≤ 0.64 radially and approximately 69% of the vortex centres is within the radial spread band, 
suggesting that there are a few outliers outside ±1 standard deviation band. This implies that the vortex 
position of the vortex centres changes as a function of time. As such, the vortex centres are not symmetric 
about the mid-span of the annulus and do not coincide with the annulus gap mid-span. The vortex centres are 
more displaced toward the wall of the outer cylinder, due to the wide gap between the rotating inner cylinder 
and stationary outer cylinder in this test case. 

5  Axial velocity profiles 

The velocity profile along the gap mid-span of the annulus has been a focus of interest in most of the 
previous studies on the Taylor vortex flow including [26] and [27]. To the best of the authors’ knowledge, no 
previous study has reported the velocity distribution at radial positions near the wall of the inner cylinder and 
near the wall of the outer cylinder. The uniqueness of the large gap width between the cylinders in this study 
prompts detailing the axial and radial velocity profiles close to both the inner and outer cylinder surfaces. 
The radial velocity and axial velocity profiles at three different radial heights are therefore examined to 
understand in details the flow physics in these unexplored regions. The velocity profiles were extracted and 
plotted at constant radial positions along the axial direction on the lower (𝜃 = −𝜋/2) channel of the annulus. 
The profiles are shown together with the PIV experimental error band, delimited by dashed lines, to 
document the experimental uncertainty. 
 
The location of the vortex centres documented in figure 3 and figure 4 has a significant effect on the axial 
and radial velocity profiles. In figure 5 and figure 6, the centres of the inward and outward flows are oblique 
saddle planes of axial velocity separating each Taylor vortex. The axial velocity profiles display alternating 
maxima and minima, with zero crossings in between, which is where the 𝑟 = 𝑅𝑖 + 0.5𝑑 mid-span cylindrical 
surface intersects oblique saddle planes of axial velocity in the meridional plane. 
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The normalised axial velocity profile at 𝑟 = 𝑅𝑖 + 0.5𝑑 (the gap mid-span of the annulus) and 𝜃 = −𝜋/2 is 
shown in figure 5. Figure 5 shows that axial velocity maxima occur close to the cores of clockwise vortices 
and axial velocity minima occur close to the cores of the anti-clockwise vortices of figure 2. The speed range 
covered by the normalised axial velocity profiles at this radial position is relatively small compared with the 
surface speed of the rotating inner cylinder and the speed range of the axial velocity profiles at 𝑟 = 𝑅𝑖 +
0.125𝑑 and 𝑟 = 𝑅𝑖 + 0.875𝑑 in figure 6. The fact that the normalised axial velocity at 𝑟 = 𝑅𝑖 + 0.5𝑑 is not 
zero in figure 5 at each vortex centre axial location is a consequence of the radial displacement of the vortex 
centres away from 𝑟 = 𝑅𝑖 + 0.5𝑑 shown in figure 4. Since the centres of the vortices do not lie along the 
𝑟 = 𝑅𝑖 + 0.5𝑑 line, there is a small axial velocity induced by the vortices at 𝑟 = 𝑅𝑖 + 0.5𝑑. 
 

 
Fig. 5 Normalised axial velocity profiles in the meridional plane at the constant radial position 𝑟 = 𝑅𝑖 + 0.5𝑑 with PIV 

error bands,𝜃 = −𝜋/2, Γ = 7.81, 𝜂 = 0.44 
 

 
Fig. 6 Normalised axial velocity profiles in the meridional plane at constant radial positions 𝑟 = 𝑅𝑖 + 0.125𝑑 and 

𝑟 = 𝑅𝑖 + 0.875𝑑  with PIV error bands, 𝜃 = −𝜋/2, Γ = 7.81, 𝜂 = 0.44 
 
In figure 5, along the constant radial position 𝑟 = 𝑅𝑖 + 0.5𝑑, the magnitude of the axial velocity at the right 
end-wall boundary, at 𝑋 = 10𝑅𝑖, is observed to be different from the one at the left end-wall, at 𝑋 = 0. This 
may be attributed to the difference in the radial location of the vortex centres and to the misalignment in the 
end-wall boundaries. That is, if the end-wall boundaries were not perfectly aligned perpendicular to the inner 
cylinder rotation axis, this would result in a periodic forcing of the flow. 
 
Figure 6 shows an interesting feature of the axial velocity distribution near the wall of the inner cylinder, at 
𝑟 = 𝑅𝑖 + 0.125𝑑, and near the wall of the outer cylinder, at 𝑟 = 𝑅𝑖 + 0.875𝑑. The axial velocity is driven by 
the motion of the vortices. Each clockwise vortex induces an axial velocity maximum radially below its core 
at 𝑟 = 𝑅𝑖 + 0.125𝑑 and a minimum radially above its core at 𝑟 = 𝑅𝑖 + 0.875𝑑 at 𝜃 = −𝜋/2. Similarly, each 
anti-clockwise vortex induces an axial velocity minimum radially below its core at 𝑟 = 𝑅𝑖 + 0.125𝑑 and a 
maximum radially above its core at 𝑟 = 𝑅𝑖 + 0.875𝑑 and at 𝜃 = −𝜋/2. Inflection points on the profiles of 
the normalised axial velocity are observed along the zero axial velocity line. The inflection points on the 
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profiles in figure 6 correspond to the axial locations of the inflow regions in figure 2. These locations 
identify areas where low momentum fluid near the outer wall is convected inwardly by the radial inflow. The 
inflections may therefore be an indication of a non-monotonic shear layer across these inflow regions as a 
result of low azimuthal momentum convected from the stationary outer cylinder. The difference in the 
magnitude between the axial velocity near the wall of the inner cylinder and that near the wall of the outer 
cylinder is observed to be small, indicating that there is a balance in the net axial flow along both walls. 

6  Radial velocity profiles 

Figure 7 displays the normalised radial velocity profile at 𝑟 = 𝑅𝑖 + 0.5𝑑 , which has been the radial 
coordinate of choice for most of the radial velocity profiles reported in the open literature, such as the ones 
reported in [26]-[27]. The profile exhibits a periodic trend along the axial direction that is consistent with the 
one reported in previous work [26]-[27]. Approximately four cycles of a periodic oscillation along 𝑋/𝑅𝑖 are 
shown in figure 7. The radial velocity is not symmetric about 𝑢𝑟 = 0, the zero ordinate of figure 7. This 
feature is a result of the displacement of the vortex centres in both the axial and radial directions discussed in 
[22]. 
 

 
Fig. 7 Normalised radial velocity profiles in the meridional plane at constant radial position 𝑟 = 𝑅𝑖 + 0.5𝑑 with PIV 

error bands, 𝜃 = −𝜋/2, Γ = 7.81, 𝜂 = 0.44 
 
The specific PIV setup detailed in section 2 and the comparatively wide gap 𝑑 of this investigation allows 
the acquisition and analysis of the radial velocity profiles near the cylindrical walls. These profiles have not 
been previously reported in the literature and represent the first experimental contribution to the analysis of 
the near-wall Taylor flow structures at wide gap by PIV. Figures 8 and 9 display respectively the normalised 
radial velocity profiles near the wall of the inner and outer cylinders at 𝑟 = 𝑅𝑖 + 0.125𝑑 and at 𝑟 = 𝑅𝑖 +
0.875𝑑. 
 

 
Fig. 8 Normalised radial velocity profiles in the meridional plane at constant radial position 𝑟 = 𝑅𝑖 + 0.125𝑑 with PIV 

error bands, 𝜃 = −𝜋/2, Γ = 7.81, 𝜂 = 0.44 
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The locations of the radial velocity maxima and the radial velocity minima in figure 8 mark the meeting 
points of the radial outflow and radial inward flow respectively, between two adjacent vortices (induced 
downwells at 𝜃 = −𝜋/2 on the meridional plane of figure 2. The locations of the zero crossing of the radial 
velocity in figure 8 mark the centres of each vortex at 𝜃 = −𝜋/2 on the meridional plane of figure 2. 
 

 
Fig. 9 Normalised radial velocity profiles in the meridional plane at constant radial position 𝑟 = 𝑅𝑖 + 0.875𝑑 with PIV 

error bands, 𝜃 = −𝜋/2, Γ = 7.81, 𝜂 = 0.44 
 
The radial velocity profiles in figure 8 exhibit the same periodic trend along the axial direction of figure 7. 
These profiles also show that the radial velocity is not symmetric about the zero radial velocity line at 
𝑟 = 𝑅𝑖 + 0.125𝑑 and that the shape of the velocity peak at the outflow regions is sharper than that of the 
velocity trough at the inflow regions. This feature is attributed to the difference in the magnitudes of the 
Taylor vortex induced velocity at the saddle planes of axial velocity between two adjacent vortices. At these 
planes, the magnitude of the velocity vectors of the outflow regions is greater than the magnitude of the 
velocity vectors of the inflow regions, as shown in figure 2. The sharper maxima (crests) in figure 8 
correspond to jet-like outflows in the radial direction while the wider minima (valleys) correspond to radial 
sink-like inflows in figure 2. 
 
The difference in the induced velocity is linked to the way in which the vortex centres of each Taylor vortex 
pair sit closer together than the vortex centres between neighbouring vortex pairs, as observed in figure 3. 
The mass flow rate of the vortex pair induced outflow is balanced by the mass flow rate of the inflow 
between neighbouring vortex pairs, to satisfy mass conservation in the annular enclosure. Since the radial 
through-flow cross-sectional area between vortex pairs is smaller than the area between neighbouring vortex 
pairs, the outflow radial velocity is higher, generating the asymmetry observed in figure 8. 
 
The radial velocity maxima and minima near the left end-wall of figure 8 are observed to be slightly different 
compared to the ones at the right end-wall. This feature is probably due to the difference in the boundary 
conditions at the two end-walls. The discontinuous nature of the boundary conditions, where the inner 
cylinder meets the end-walls, generates weak circulation cells adjacent to the end-walls. As such, the radial 
velocity magnitude at both end-walls is lower than that at the other inflow region of the annulus. Also, the 
radial velocity at the left end-wall is affected by the presence of the slit for the laser light of figure 1(b). 
 
In figure 9, at the outward flow regions, the normalised axial velocity profiles near the outer cylinder exhibit 
one single peak as the profiles near the inner cylinder. The inward flow pattern in figure 9 is instead quite 
different, as the single trough minima of figure 8 are replaced by double trough minima in figure 9. This 
pattern can be explained by using simple potential flow theory. Consider any one vortex that has vortex 
neighbours on both sides in figure 3. Let 𝑟1 be the distance from the vortex centre in the meridional plane. 
The induced radial velocity 𝑢𝑟 of this vortex and its neighbour add so that, as the outflow saddle plane lies in 
the rotational portion of the vortex, where 𝑢𝑟 ∝ 𝑟1, one radial velocity maximum is obtained. The greater 
axial distance between the inflow saddle plane and the vortex centres from neighbouring Taylor vortex cells 
allows the saddle plane to lie in the portion of the vortex where 𝑢𝑟 decreases with 𝑟1. This results in two 
distinct radial velocity minima in figure 9. This external vortex region correspond to the irrotational portion 
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of a compound vortex in a potential flow, where 𝑢𝑟 ∝ 1/𝑟1. 
 
Each double trough minimum in figure 9 merges in a single wider minimum at 𝑟 = 𝑅𝑖 + 0.125𝑑 , close to 
the inner cylinder, as shown in figure 8. This shows that the induced velocity streams mix up by radial 
momentum transfer over the radial distance from 𝑟 = 𝑅𝑖 + 0.875𝑑 to 𝑟 = 𝑅𝑖 + 0.125𝑑, in the radial inflow. 
 
These results have shown that the radial inflow is characterised by a relatively more complex flow pattern 
than the radial outflow. The sharp maxima in figure 8 are axially aligned with the maxima in figure 9, 
indicating that the outflow shape is jet-like over a significant portion of the gap between the cylinders, over 
the range 𝑅𝑖 + 0.125𝑑 < 𝑟 < 𝑅𝑖 + 0.875𝑑. The wider radial velocity minima in figure 8 are axially aligned 
with the double through minima of figure 9, indicating that there are two radially confluent streams merging 
in a single radial stream in the inflow regions. This suggests that the flow between neighbouring vortex pairs 
is coupled to a less degree close to the outer cylinder than close to the inner cylinder. Such radial dependence 
of the degree of interaction between neighbouring Taylor vortex pairs may have practical implications for the 
development of successful models of the Taylor cell dynamics in wide gap configurations. 

7  Conclusions 

In this study, Particle Image Velocimetry was applied to the flow between concentric cylinders of radius ratio 
𝜂 = 0.44, aspect ratio Γ = 7.81, speed ratio 𝜇 = 0, and Taylor number 𝑇𝑇 = 6.47 x 106. Unlike the majority of 
the past investigations on the Taylor vortex flow that focused on large aspect ratio and low radius ratio 
configurations, this paper addressed the comparatively under-explored low aspect ratio and low radius ratio 
(wide gap width) configuration, relevant to important aerospace engineering applications such as lubrication 
bearing chambers of aircraft engines. 
 
Previous investigations on Taylor instability have focused on either qualitative flow visualisations or 
quantitative measurements at the cylinder annulus mid-gap. By presenting PIV measurements on the 
meridional plane across the full annulus, this work documents previously unreported flow features in the 
annulus of co-axial rotating cylinders. These features mainly concern the inflow region between pairs of 
counter-rotating Taylor vortices. Inflection points are present in the profiles of normalised axial velocity near 
the wall of the outer cylinder, where the radial velocity profile exhibits double trough minima. This 
represents two radially confluent streams merging in a single radial stream in the inflow regions, such that, 
close to the wall of the inner cylinder, the radial velocity profile is asymmetric and features a single wider 
minimum radially below each double through minima. An approach for interpreting these features is 
proposed, based on potential flow concepts and on the observation that the axial distance between the inflow 
saddle plane and the vortex centres from neighbouring Taylor vortex cells is greater than that between the 
outflow saddle plane and the vortex centres. 
 
This work has provided a body of experimental evidence that poses questions of both theoretical and 
practical nature. From the theoretical viewpoint, it challenges the flow dynamic modellers on whether these 
features are rendered by the current models. The presence of two confluent streams in the inflow region may 
indicate a degree of coupling between neighbouring vortex cells that is radially varying and perhaps lower 
towards the outer cylinder wall. This may prompt further progress in modelling wavy Taylor vortex flow, 
leading to a more complete understanding of the flow dynamics. 
 
The experimental evidence is of practical relevance to the design of oil bearing chambers. Specifically, the 
flow mixing between neighbouring vortex cells and possibly the heat transfer rate are likely to be lower than 
from a pattern of regularly spaced vortices in the axial direction. This influences the migration of metal 
contaminants between cells. A single magnetic plug is often used to remove these particles, under the 
assumption that substantial flow mixing between cells takes place. This poses the question of how the newly 
observed flow features affect the effectiveness of this single point metal particle collection. 
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