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Abstract This paper presents a non-intrusive experimental technique to characterize the dense particle laden jet
flow produced by straw blowers machine. These flows are often encountered in agricultural contexts for bedding,
feeding or mulching applications. The experimental set up consists of a straw blower machine, a white background
tarp and a color video camera filming the straw jet over a twelve meter test section, in daylight conditions. The
technique is based on an image processing routine to detect and track straw particles from the video sequence. In
particular, the processing combines two segmentation techniques: 1) a color segmentation, using k-means clustering
in the CIElab color space and 2) an adaptive background subtraction, using Eigen-Background decomposition. For
a set of four test cases, the straw jet trajectories obtained were complemented –and validated– with the measurement
of straw distribution at the ground using a mesh of panels.
Keywords: Image Processing for Particle-Laden Flows, K-means Clustering Segmentation, Eigen-Background
Subtraction, Straw Jets.

1 Introduction

The dispersion of straw materials from wheat, oats, barley, timothy or rye is widely used in agricultural applica-
tions such as fodder distribution or soil mulching ([1, 2, 3]). These operations are carried out with straw blower
machines, which chops up to 20 tons/hours of straw material and casts it at distances of the order of 20−30m.
The flow produced is a complex turbulent particle-laden flow with high straw-to-air volume concentrations and
high particle-to-particle interaction.

On the other hand, straw blower machines are required to be highly versatile, with performances defined in
any operating condition. As no simple modeling of these flows exists, the only tool at the designers’ disposal
is experience, based on expensive trial and error testing. A standard test consists in operating the machine on a
mesh of panels on the ground, and weight the straw distribution within a time interval. This method provides
the range of the blower and the final straw dispersion. However, it is extremely time-consuming and offers no
insights on the dynamics of the flow.

This paper proposes a simple and fast method to characterize the trajectory and the spreading of a straw
jet using a color photo camera and a white tarp, in daylight conditions. The method is based on an image
processing routine to detect and extract straw particles in a sequence of images. It can be fully automated and
its robustness can be extended to the experimental characterization of others two-phase flows. The challenge
of determining– and tracking– particles or flow boundaries from video records is, in fact, fundamental in the
non-intrusive characterization of any multiphase flows. Different approaches are reviewed in [4, 5, 6, 7].

A common approach consists in acquiring grayscale images, threshold the dispersed phase, based on its
higher intensity with respect to the background, and perform morphologic operation on the resulting binary
image. These operations, based on connectivity analysis, include labeling and computation of particle centroid,
equivalent diameters and displacements [8, 9, 10, 11].

The success of these methods, however, stands upon the threshold step. Specifically, in the identification
of the grayscale value above which a pixel is classified as belonging to the dispersed phase –a bubble, a solid
particle or any object to extract– or as belonging to the background. This classification problem is essential in
any computer vision application, and is known as segmentation.

Comprehensive reviews of grayscale (monochrome) segmentation are proposed in [12, 13, 14]. These
papers show how different thresholding techniques leads to different results, depending on the image histogram.
It is not surprising, then, that the robustness of an image-based measurements relies on the control of the
illumination to have sufficiently re-contrasted images and, ideally, with bimodal distribution histograms.
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The same constraints applies for edge detection algorithms, which are often used, in experimental fluid
mechanics, to track gas-liquid interfaces. Diluting fluorescent tracers on a liquid, and illuminating its interface
with a laser sheet, allows to acquire highly contrasted images on which several edge detection algorithms
operate accurately. Depending on the image exposure, tracers may appear either as a uniformly brighter regions
or as a discrete set of particles like in Particle Image Velocimetry (PIV) acquisitions. The first configuration
is used in the Level Detection and Recording (LeDaR) technique ([15, 16, 17]), in which gas-liquid interfaces
are detected using image convolution with Sobel-like kernels. The second configuration is of interest in the
dynamic masking algorithms for PIV measurements in two-phase flows. An example is proposed in [18], based
on the Radon transform, which is a mathematical tool used for detecting linear features in salt-and-pepper
noisy images ([19]).

Nevertheless, when experimental conditions do not allow to control the illumination, like in the case ana-
lyzed in this paper, the contrast of the images is often insufficient for any monochrome segmentation or edge
extraction method. The processing method proposed in this work aims to release the constraints on the illumi-
nation and the image contrast, to allow for straw particle segmentation also in non-optimal, daylight conditions.
The method requires color images, which are processed in three steps. The first step extracts straw elements
based on their color properties. The second step refines the segmentation by removing static objects from the
images. The third step computes the average image to detect the jet boundaries, its trajectory and spreading.

Because of the higher amount of information conveyed by color images, the number of possible segmenta-
tion approaches is higher: a color image contains several gray scale images, each of which represents a color
component with respect to a color space. On the other hand, there exist many color spaces derived from the
standard tristimuli Red (R), Green (G) and Blue (B), and none of them has yet been proved superior for all
purposes. Comprehensive reviews on the color segmentation are proposed in [20] and [21].

Some authors use the color information to extract objects based on color homogeneity (e.g.[24, 25]). Other
authors use the color information to compute a grayscale image suited for which monochrome segmentation
(e.g [22, 23]). The color segmentation this work uses a combines both approaches.

The routine starts with a classification. The images acquired have a simple texture: they contain (1) straw
elements on a white (2) background that has (3) dark defects, such as shadows or background tarp ripples, and
(4) bright defects , such as sunlight spots. The first segmentation step consist in classifying the image pixels as
belonging to one of these four clusters and extract the one containing the straw elements. The method proposed
is based on k-means clustering performed on the CIE Lab color space, which key advantages for clustering
approaches are reported in [26] and [27].

The second processing step refines the segmentation removing static objects which eventually remains
after the first step. The method proposed is the adaptive Eigen-Background subtraction. Adaptive background
techniques are popular in automatic video analysis, especially in video surveillance, where cameras works in
time varying and non optimal light conditions. Subtraction methods consider moving objects as connected area
which significantly differ from a reference image. This image, however, needs to be continuously adapted to
compensate for all the challenges that an outdoor environments sets, such as slow illumination variation from
down to dusk, camera oscillation or disruptive glare of reflected sunlight. Comprehensive review on the topic
are proposed in [28] and [29].

The Eigen-background method was introduced in [30] and it is based on the assumption that moving objects
are unlikely to appear in the same position at different frames and, moreover, only occupies small portions of
the image. Therefore, if the video sequence is reshaped into a matrix, and decomposed into its principal
components via Principal Component Analysis (PCA), the static backgrounds are to be found within the first,
high energy, components, whereas the moving objects will belong to last, low energy, components.

The third step of the image processing consists in averaging the straw images, to compute the mean jet
trajectory, and computing the jet edges via standard monochrome segmentation. The method proposed is Otsu’s
binarization, followed by a morphological filter to extract only the biggest connected area.

The three image processing steps are described in Sec.3 and the results for the test cases studied are pre-
sented and discussed in Sec.4. Test cases and experimental set up are introduced in the following section.
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2 Experimental Set Up and Conditions

The experiments are conducted in a closed barn to avoid wind disturbances. The barn has windows on the roof
and on the sides so that daylight illuminates the scene. The set up is sketched in Fig.1, with the reference frame
used hereinafter. A 15m× 3m white tarp sets the background. In the ground, a mesh of (1× 1m2) panels is
installed, covering an area of 3× 16m2. The blower is a Kuhn Primotor 3570 , positioned 3 meters from the
first raw of panel. The camera used is a Canon EOS1100D, with EFS18−55mm objective, and it is installed
on a podium at 3m from the ground, and 30m from the image plane. The field of view is about 12m large.

Fig. 1 Sketch of the experimental set up.

Fig.2 shows a typical calibration image. The test section is empty and a calibrator is aligned with the axis
of the nozzle at the blower’s outlet. The support of the calibrator indicates the location of the ground line in the
local XZ plane, so the image is cropped to have Z = 0 in the last pixel raw.

The calibrator has a pattern of circles of 22cm diameter, positioned in the Z =−0.5m and Z = 0.5m plane.
This has been used to compute the magnification factor and its uncertainty, estimated as twice the standard
deviation of the circles diameter measurements in pixels. The results is M = 2.78±0.08mm/pixel.

The mesh panel has been used to align the image with the ground line and to analyze the perspective error.
The camera is centered to have a one point perspective, with the background tarps being perpendicular to the
focal plane and the vanishing point in the center of the image. The perspective distortion has been determined
by comparing the mesh panel point location with the linear fits expected from the magnification factor.

Fig. 2 Example of calibration image. The ground mesh panels gives the horizontal scale of the image, in meter. The
vanishing point is approximately in the center of the image.
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Fig.3 shows an example snapshot of the straw jet during the test. Depending on the light conditions, the
image luminance in each straw elements range 10−20% of the maximum value. The illumination of the scene
is far from optimal: the background is unevenly illuminated and the tarp presents several wrinkles which reflects
light in some regions and cast shadows in others. Depending on the light conditions, the image luminance in
each straw elements range 10−20% of the maximum value.

For each test, nt = 40 images with 4272× 2848pixels resolution, 16bits depth, RGB images are acquired
in multi-shooting mode at a 1 f .p.s. These images are flipped (left to right) to have the X axis direction from
left to right.

Fig. 3 A typical snapshot image taken during the experiments. The background is dark in the center of the image, bright
on the sides.

The straw jet is composed of a set of discrete straw packets, with a shape defined by the balance between
aerodynamic forces, which tend to stretch and untie them, and particle-to-particle forces, which tend to keep
them twisted. The purpose of our measurement technique is to detect the statistic boundaries of the straw pack-
ets and the average trajectory. The measurements are complemented, and validated, with the straw distribution
at the ground, reconstructed by weighting the straw in each mesh panel at the end of the experiment.

The nozzle at the blower’s outlet has a rectangular cross section of 40cm×20cm which can be either opened
or closed at the bottom edge. To validate the method, this paper presents the results on four cases: two blower
rotational speeds, namely V1 = 450rpm and V2 = 540rpm, and two nozzle configurations, namely Open and
Closed nozzles. In all the tests, the nozzle is tilted upward of 10◦ and the straw used is composed of node free
wheat kernels.

3 Image Processing

This section presents the three steps of the image processing, which has been implemented in MATLAB 2015.
The first step extracts straw elements using a K-means clustering in the LaB color space, as described in Sec.3.1.
The second step removes the static objects using adaptive Eigenbackground subtraction, as described in Sec.3.2.
The third step binarizes the average image with Otsu’s method, extract and smooths its edges the resulting
curves as described in Sec.3.3.

3.1 Color Segmentation: K-Means Clustering in Lab Color Space

Each of the nt = 40 images is acquired in the RGB color-space, hence represented by a set of three matrices
(Ri,Gi,Bi) of size nx× ny containing values in the range [0,1]. For the example image in Fig.3, these com-
ponents are shown in Fig.4.a. This color space has three limitations in segmentation analysis: it is brightness
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Fig. 4 RGB (a), HSV (b) and Lab (c) representation of the image snapshot in Fig.3, and spatial definition of their compo-
nents. The histograms of all the images has been stretched to have 1% of the pixels saturated on both extremes.

dependent, meaning that a change in light intensity affects all its components; it is redundant, because its
component are highly correlated; it is not provided with a linear color metrics, meaning that it not possible to
measure color differences from their distance in this space.

The first two limitations are overcome by popular HS color-spaces such as HSV , HSI or HSB. In these
spaces the color information, the chrominance, is expressed by two components: the Hue (H), which express
the dominant wavelength of light and the Saturation (S), which express the amount of white mixed with the
corresponding Hue (i.e. the color purity). The third component is assigned to light intensity, and each HS
space uses a different combinations of RGB to compute it. For the example image shown in Fig.3, the HSV
representation is in Fig.4.b. In uniform light conditions the saturation provides a highly contrasted monochrome
image of the jet: the color of straw elements is far from white (i.e. it has high saturation) whereas the tarp is
white (i.e. it has low saturation). In non optimal conditions, however, shadows and background defects also
have high saturation and lead to over-segmentation of the straw jet. Moreover, the HSV space is affected by
Hue ambiguity at low saturations and low values, as color is no longer distinguishable close to white or black.

Although the saturation channel is kept as the best grayscale representation of the images, the color seg-
mentation proposed in this work benefits from a color-space provided of a linear metrics. This is the case of the
CIElab, shortly referred to as Lab.

This space is derived from a non-linear transformation of the RGB intended to mimic the non linear re-
sponse of human eye. It provides a color opponent representation in which, similarly to HS spaces, one com-
ponent express the light intensity, (L) and two components express the color information: a and b contains the
color coordinate in a green to red (−a,a) and yellow to blue (−b,b) axes. For the example image shown in
Fig.3, these three components are shown in Fig.4.c. These two components do not have the Hue ambiguity
problem and the color information in each of the np = nx ny pixels is defined by a pairt x(i) = (ai,bi), regardles
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of the light intensity L. Moreover, by construction, the set {x(1),x(2) . . .x(np)} spans a R2 space that is equipped
with an Euclidean distance dE . For the example Fig.3, this set is plotted in Fig.5.

This space is suited for k-means clustering, with the purpose of partitioning the pixel population into k
clusters Si, each of which containing |Si| elements, and so that ∑

k
i=0 |Si| = np and Si

⋂
S j = 0 ∀i 6= j. In its

basic implementation [31] the number of cluster k is defined a priori so the classification problem is solved by
minimizing the Euclidean distance de between an element xi and the centroid µi of the cluster Si to which it
belongs:

min
( k

∑
i=1

∑
x∈Si

de(xi,µi)

)
= min

( k

∑
i=1

∑
x∈Si

||xi−µi||2
)

with µi =
1
|Si| ∑j∈Si

x j ∀i (1)

The algorithm start from a set of initial centroids µi, attributes the closest cluster to each element xi and
computes a new set of centroids on which it repeats the attribution element to cluster. In this work the number
of cluster selected is k = 4. The resulting clusters are represented in Fig.5, then reshaped into images in Fig. 6.

Fig. 5 Pixel color distribution in terms of color opponents (ai,bi)∀L. For plottig purposes the only half of the pixel
population is here represented.

Fig. 6 Image Cluster Separation: the straw jet is the cluster with the highest saturation (S4), together with the straw on
the ground and a small portion of the backgound remains. These parts are removed in the next step, the Eigen-
Background.
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At the end the operation, the cluster selected is the one having the centroid with the highest saturation,

which is expressed by the modulus Si =
√

a2
i +b2

i . The resulting image is then converted to a monochrome
image Ti taking its saturation component. For the example in Fig.3, the resulting Ti is shown in Fig.7.a.

(a) Grayscale image Ti after color segmentation of Fig.3. (b) Straw detection of Fig.3.

Fig. 7 Gray scale image Ti before (a) and after (b) the Eigen-Background subtraction.

3.2 Adaptive Background Subtraction: The Eigen-Background Decomposition

This step completes the segmentation removing static objects from the grayscale images Ti using Eigen-
Background decomposition. First, each image Ti ∈ Rnx×ny is reshaped into a column vector Ii ∈ Rnp×1. These
nt vectors become the i− th column of a video matrix A(np , nt), after having removed the mean image:

A(ns×nt) =
(
Î1 Î2 · · · Înt

)
with Îi = Ii−

1
nt

i=nt

∑
i=1

Ii (2)

The columns of this matrix are usually independent, hence this matrix has a full rank r = nt . However,
because static objects appears in all the frames in the same position, their contribution to the information
contained in the matrix has a much lower rank representation: a nt set of images containing nothing but static
objects, for example, can be represented by only one picture, i.e. one column of this matrix, i.e. a rank r = 1
representation.

The analysis of rank based decomposition–and approximation– of a matrix is known as Principal Compo-
nent Analysis (PCA).The PCA can be obtained either by eigenvalue decomposition of the covariance1 matrix
D = AT ·A, either by Singular Value Decomposition (SVD) of the matrix A. With the second approach, the
video can be decomposed in its components Ek as follows:

A =
nt

∑
0

Ek =
nt

∑
0

σk uk vk with A =UΣV T =
(
u1 u2 · · · unt

)


σ1 0 · · · 0
0 σ2 · · · 0

0 0
. . . 0

0 0 · · · σnt




v1
v2
...

vnt

 (3)

In the SVD decomposition: U is a ns× nt matrix whose columns uk forms an orthonormal basis for the
column space of A (hence the video frames); Σ is a nt × nt diagonal matrix, containing hight-to low ranked
singular values σk in its diagonal; V T is a nt × nt matrix whose raws vk forms an orthonormal basis for the
raw space of A (hence in the time domain). The key advantage of this decomposition is that components
Ek = σk uk vk are mutually orthogonal, meaning that Ei ·ET

j = 0 ∀i 6= j and that the norm of each component is

1It is worth noticing that D is, by construction, square and symmetric. Therefore, its eigenvalue decomposition is D = ΦΛΦT , with
Λ the diagonal matrix containing the eigenvalues λi and Φ the matrix with the eigenvectors. Using the SV D in D reads: D = AT A =
(UΣV T )T (UΣV T ) = (V ΣUT )(UΣV T ) = V Σ2V T , from which λi = σ2

i . The technique was in fact named Eigen-Backgound because
the PCA of the video matrix A was first presented in terms of λis.
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defined by the singular value itself: ||Ek|| = σk. This implies that the contribution to the matrix of each Ek is
weighted by the singular value σk and the orthogonality guarantees that the error produced by taking only the
first p< nt components is minimal, in a least square sense, and equal to the singular value of the first component
left-out ||A−∑

p
1 Ek||= σp+1.

The nt normalized singular values σ̂ j = σi/σ1 for a video sequence of Ti monochrome images are plotted in
Fig. 8 for two cases: a) the gray scale are obtained from the raw saturation channel S of the images (Fig.4.b), b)
the gray scale images Ti are obtained after the k-means color segmentation. It is worth noticing, in fact, that the
less static objects appears in the video, the weaker is the singular value decay, meaning that more component
are required to reproduce the information contained in A.

In this work we consider the first three components to be representative of the backgrounds, therefore we
construct a video sequence B = E1 +E2 +E3. The straw particle are detected, in in each frame, as the pixel
regions from Ti which differ from the corresponding background of a given threshold T h. This threshold is
fixed from the normalized singular value decay, selecting the contribution of the last ones, where the slope of
the decay becomes negligible. Setting T h = σ̂(35) gives the result in Fig.7.b.

Fig. 8 Singular value decay for a video sequence before and after the color-space segmentation.

3.3 Geometrical Definition of Jet Trajectory and Spreading

After the color segmentation and the Eigen-Background subtraction, it is assumed that each video frame only
contains straw element on a black background. From the set of nt = 40 images, the average frame is shown in
Fig.9.a. A standard Otsu’s thresholding is used to compute its binary representation, and a morphology filter
extracts only the connected area with the larger amount of pixels. This area is considered as the statistical
average of the straw jet. Upper and lower edges are computed from a standard gradient method.The result is
shown in Fig.9.b, with the calibration applied. These edges are smoothed using a 1-D moving average filter
and fitted by a polynomial curve fB(x) and fT (x) respectively for the bottom and top edge.

(a) (b)

Fig. 9 Average image (a) and its binary image with smoothed edges (b).
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These curves are the support for estimating the jet’s geometrical centerline, trajectory and spreading. At
the scope we define a discrete set of n = 200, ∆x spaced points xn. Along the two curves we consider the two
polylines fB(xn) and fT (xn), having the same number of elements. Note that because of the different curve
length, at this step it is necessary to let the bottom curve assume negative values. On a given point xi, we define
the jet width bi as the local discrete Fréchet distance b(xi) = min{dE( fB(xi), fT (xn))}. The correspondent
centerline Ci = C(xi) is then positioned so as to have an equal Fréchet distance from both the curves. The
polyline connecting the discrete set of centerline points C(xn) is considered as the jet curvilinear trajectory
ζ . The curvilinear length ζ (n) is finally computed as the sum of the chord lengths from 0 to n, i.e. ζ (n) =
∑

n−1
0

√
∆x2 +(Ci+1−Ci)2. The geometrical construction for the example in Fig.9 is shown in Fig.10.

Fig. 10 Computation of Jet Trajectory and Spreading Binarized Edges.

4 Results and Discussion

In Fig.11 we compare the jet trajectory measurement for the open nozzle configuration at the two blower veloc-
ities; in Fig.12 we compare the weight distribution along the centerline axis and normalized with respect to the
total mass distributed. Fig.13.a shows the centerline profile of the straw distribution at the ground, normalized
to their respective maximum weights and Fig.13.b shows the jet spreading along curvilinear trajectory ζ .

(a) V1 = 450rpm, Str1 (b) V2 = 540rpm, Str1

Fig. 11 Effect of blower velocity on open nozzle: measured trajectories and jet boundaries.

(a) V1 = 450rpm (b) V2 = 540rpm

Fig. 12 Effect of blower velocity on open nozzle: interpolated, normalized, straw distribution on the ground mesh panels.
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(a) Centerline Straw Distribution for V 1 and V 2 (b) Jet Spreading for V 1 and V 2

Fig. 13 Effect of blower velocity on open nozzle: centerline straw distribution at the ground and on jet spreading along
the curvilinear trajectory ζ

Fig.11 shows that the jet remains horizontal and compact in a first phase, and starts spreading only in its
descending phase. This is evident from Fig. 13.b, which shows a negligible jet spreading region followed
by a linear spreading region along the curvilinear trajectory ζ . Increasing the blower velocity, i.e. the initial
momentum of the straw, delays the spreading and descending phase of the jet.

It is observed that, although the jet is characterized by discrete packets of straw, twisted together along
their entire trajectory, several straw particles lose detaches, and falls, when the jet centerline trajectory is still
horizontal. These particles are removed by the image processing routine in its third step, the binarization, in
which only the jet region is extracted. It is believed that they are responsible for the stream-wise skewness of
the ground distribution in Fig.13.a, particularly its left tail. Noteworthy, these distributions are similar in this
region: due to high particle-particle interaction (attractive, due to straw kernel twisting) the amount of particles
leaving the jet boundaries is small and weakly affected by the blower velocity. In both tests, the location of the
maximum weights on the ground agrees with the jet ranges C(z = 0) from the centerline trajectory.

For the closed nozzle case, the same results are collected in the Figs.14-16. A comparison with the previous
figures shows that the jet is now more compact, with spreading rate almost halved with respect to the open
nozzle. This is also evident in the straw distributions at the ground, where higher straw concentrations are
reached and the relative importance of the left tail in the centerline straw distribution decreases. This suggest
that a closer nozzle allows a better control of the straw casting, by forcing the conservation of horizontal
momentum on a smaller jet cross-section. With respect to the open nozzle the ranges are slightly increases and,
as before, the position of the maximum weight at the ground is correctly predicted from the trajectories.

(a) V1 = 450rpm (b) V2 = 540rpm

Fig. 14 Effect of Blower Velocity on closed nozzle: measured trajectories and jet boundaries.

5 Conclusions

This paper proposes a non invasive technique to measure the average trajectory and spreading of the particle-
laden flow produced by straw blower machines. The method is based on an image processing routine to detect
straw particles from a video sequence of the flow. The processing presented combines several techniques from
computer vision and pattern recognition and proved to be sufficiently robust to work in daylight condition and
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(a) V1 = 450rpm (b) V2 = 540rpm

Fig. 15 Effect of blower velocity on closed nozzle: interpolated, normalized, straw distribution on the ground mesh
panels.

(a) Centerline Straw Distribution for V 1 and V 2 (b) Jet Spreading for V 1 and V 2

Fig. 16 Effect of Blower Velocity on closed Nozzle: interpolated, normalized, straw distribution on the ground mesh
panels

unevenly illuminated scene. Using a simple set up– a tarp and a photo-camera on a podium– it was possible
to have an insight on a complex flow. In particular, we compared two configurations for the blower’s outlet
nozzle: a closed nozzle, with a rectangular cross section, and an open nozzle, in which the bottom surface was
removed. It was shown that a closed decreases the jet width, hence enhancing control and directionality of the
final straw distribution.
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